Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Luz, Eduardo José da Silva | - |
Autor(es): dc.contributor | Luz, Eduardo José da Silva | - |
Autor(es): dc.contributor | Merschmann, Luiz Henrique de Campos | - |
Autor(es): dc.contributor | Silva, Rodrigo César Pedrosa | - |
Autor(es): dc.creator | Alvarenga, João Paulo Reis | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:15:30Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:15:30Z | - |
Data de envio: dc.date.issued | 2023-05-02 | - |
Data de envio: dc.date.issued | 2023-05-02 | - |
Data de envio: dc.date.issued | 2022 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/16494 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1008198 | - |
Descrição: dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | - |
Descrição: dc.description | Os avanços mais recentes no Reconhecimento Automático de Fala permitem alcançar uma qualidade jamais antes vista em línguas com dados abundantes, tais como o inglês, e em línguas com dados limitados, como o português. Em particular, abordagens baseadas em modelos de Transformers permitem realizar a tarefa de reconhecimento de fala diretamente a partir da representação do sinal bruto. Alguns estudos já indicam que a qualidade da transcrição pode ser melhorada ainda mais com o uso de modelos de linguagem. No entanto, o impacto real destes modelos ainda não está claro para o português brasileiro, assim como a importância da qualidade dos dados usados para treinar os modelos. Por isso, este trabalho explora o impacto dos modelos de linguagem aplicados ao reconhecimento de fala para língua portuguesa, tanto em termos de qualidade de dados quanto de desempenho computacional, com uma abordagem centrada em dados. Uma abordagem para medir a similaridade entre conjuntos de dados é proposta para auxiliar na tomada de decisão durante o treinamento. Os resultados mostram que é possível reduzir o tamanho do modelo de linguagem em ~80% e ainda alcançar taxas de erro por palavra em torno de 7,17% para o conjunto de dados Common Voice. | - |
Descrição: dc.description | Recent advances in Automatic Speech Recognition have enabled remarkable improvements in transcription quality for languages with abundant data, such as English, and for those with limited resources, such as Brazilian Portuguese. Recent approaches address speech recognition problems with Transformers based models, which are capable of directly processing raw signals without manual feature extraction. It has been shown that language models can further improve transcription quality. However, the real impact of such language models is still not clear, especially in the Portuguese scenario. Moreover, the quality of the data used for training is known to be critical, yet there are few works in the literature addressing this issue. This work investigates the effect of language models applied to Portuguese speech recognition in terms of data quality and computational performance, with an emphasis on data. We propose an approach to measure the similarity between datasets to inform decisionmaking during training. Our results show that it is possible to reduce the size of the language model by 80% and still achieve error rates of 7.17% on the Common Voice dataset. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | http://creativecommons.org/licenses/by/3.0/us/ | - |
Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 12/04/2023 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante. | - |
Palavras-chave: dc.subject | Inteligência artificial | - |
Palavras-chave: dc.subject | Ciência da computação | - |
Palavras-chave: dc.subject | Reconhecimento automático da voz | - |
Título: dc.title | Uma abordagem centrada em dados para reconhecimento de fala em português : modelo de língua e suas implicações. | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: