Width optimization of RBF kernels for binary classification of support vector machines : a density estimation-based approach.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorMenezes, Murilo V. F.-
Autor(es): dc.creatorTorres, Luiz Carlos Bambirra-
Autor(es): dc.creatorBraga, Antônio de Pádua-
Data de aceite: dc.date.accessioned2025-08-21T15:14:00Z-
Data de disponibilização: dc.date.available2025-08-21T15:14:00Z-
Data de envio: dc.date.issued2022-10-10-
Data de envio: dc.date.issued2022-10-10-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/15663-
Fonte completa do material: dc.identifierhttps://www.sciencedirect.com/science/article/pii/S0167865519302156-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.patrec.2019.08.001-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1007251-
Descrição: dc.descriptionKernels are often used for modelling non-linear data, developing a main role in models like the SVM. The optimization of its parameters to better fit each dataset is a frequently faced challenge: A bad choice of kernel parameters often implies a poor model. This problem is usually worked out using exhaustive search approaches, such as cross-validation. These methods, however, do not take into account existent information on data arrangement. This paper proposes an alternative approach, based on density estimation. By making use of density estimation methods to analyze the dataset structure, it is proposed a function over the kernel parameters. This function can be used to choose the parameters that best suit the data.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Título: dc.titleWidth optimization of RBF kernels for binary classification of support vector machines : a density estimation-based approach.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.