
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Costa, Felipe | - |
| Autor(es): dc.creator | Souza, Gil Fidelix de | - |
| Autor(es): dc.creator | Montenegro, Marcos | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T15:13:07Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T15:13:07Z | - |
| Data de envio: dc.date.issued | 2023-02-06 | - |
| Data de envio: dc.date.issued | 2023-02-06 | - |
| Data de envio: dc.date.issued | 2021 | - |
| Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/16135 | - |
| Fonte completa do material: dc.identifier | https://www.sciencedirect.com/science/article/pii/S0022247X22002396 | - |
| Fonte completa do material: dc.identifier | https://doi.org/10.1016/j.jmaa.2022.126225 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1006487 | - |
| Descrição: dc.description | The paper concerns positive solutions for the Dirichlet problem −Lu = ΛF(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in Rn, n ≥ 2, u = (u1, ..., um) : Ω → Rm, m ≥ 1, Lu = (L1u1, ..., Lmum), where each Li denotes a uniformly elliptic linear operator of second order in nondivergence form in Ω, Λ = (λ1, ..., λm) ∈ Rm, F = (f1, ..., fm) : Ω × Rm → Rm and ΛF(x, u) = (λ1f1(x, u), ..., λmfm(x, u)). For a general class of maps F we prove that there exists a hypersurface Λ∗ in Rm + := (0, ∞)m such that tuples Λ ∈ Rm + below Λ∗ correspond to minimal positive strong solutions of the above system. Stability of these solutions is also discussed. Already for tuples above Λ∗, there is no nonnegative strong solution. The shape of the hypersurface Λ∗ depends on growth on u of the nonlinearity F in a sense to be specified. When Λ ∈ Λ∗ and the coefficients of each operator Li are slightly smooth, the problem admits a unique minimal nonnegative weak solution, called extremal solution. Furthermore, when F depends only on u and all Li are Laplace operators, we investigate the L∞ regularity of this solution for any m ≥ 1 in dimensions 2 ≤ n ≤ 9 for balls and n = 2 and n = 3 for convex domains. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | en | - |
| Direitos: dc.rights | restrito | - |
| Palavras-chave: dc.subject | Positive solutions | - |
| Palavras-chave: dc.subject | Stability | - |
| Título: dc.title | Extremal solutions of strongly coupled nonlinear elliptic systems and L∞-boundedness. | - |
| Aparece nas coleções: | Repositório Institucional - UFOP | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: