Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Souza, Paulo Vitor de Campos | - |
Autor(es): dc.creator | Torres, Luiz Carlos Bambirra | - |
Autor(es): dc.creator | Silva, Gustavo Rodrigues Lacerda | - |
Autor(es): dc.creator | Braga, Antônio de Pádua | - |
Autor(es): dc.creator | Lughofer, Edwin | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:11:25Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:11:25Z | - |
Data de envio: dc.date.issued | 2022-09-15 | - |
Data de envio: dc.date.issued | 2022-09-15 | - |
Data de envio: dc.date.issued | 2019 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/15294 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.3390/electronics9050811 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1005007 | - |
Descrição: dc.description | Extreme learning machines (ELMs) are efficient for classification, regression, and time series prediction, as well as being a clear solution to backpropagation structures to determine values in intermediate layers of the learning model. One of the problems that an ELM may face is due to a large number of neurons in the hidden layer, making the expert model a specific data set. With a large number of neurons in the hidden layer, overfitting is more likely and thus unnecessary information can deterioriate the performance of the neural network. To solve this problem, a pruning method is proposed, called Pruning ELM Using Bootstrapped Lasso BR-ELM, which is based on regularization and resampling techniques, to select the most representative neurons for the model response. This method is based on an ensembled variant of Lasso (achieved through bootstrap replications) and aims to shrink the output weight parameters of the neurons to 0 as many and as much as possible. According to a subset of candidate regressors having significant coefficient values (greater than 0), it is possible to select the best neurons in the hidden layer of the ELM. Finally, pattern classification tests and benchmark regression tests of complex real-world problems are performed by comparing the proposed approach to other pruning models for ELMs. It can be seen that statistically BR-ELM can outperform several related state-of-the-art methods in terms of classification accuracies and model errors (while performing equally to Pruning-ELM P-ELM), and this with a significantly reduced number of finally selected neurons. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Fonte: o PDF do artigo. | - |
Palavras-chave: dc.subject | Lasso with bootstrapping | - |
Palavras-chave: dc.subject | Pruning of neurons | - |
Palavras-chave: dc.subject | Least angle regression | - |
Título: dc.title | An advanced pruning method in the architecture of extreme learning machines using L1-regularization and bootstrapping. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: