Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Resende, Daniela de Melo | - |
Autor(es): dc.creator | Rezende, Antonio Mauro | - |
Autor(es): dc.creator | Oliveira, Nesley Jesus Daher de | - |
Autor(es): dc.creator | Batista, Izabella Cristina Andrade | - |
Autor(es): dc.creator | Oliveira, Rodrigo Corrêa de | - |
Autor(es): dc.creator | Reis, Alexandre Barbosa | - |
Autor(es): dc.creator | Ruiz, Jeronimo Conceição | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:11:18Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:11:18Z | - |
Data de envio: dc.date.issued | 2017-02-13 | - |
Data de envio: dc.date.issued | 2017-02-13 | - |
Data de envio: dc.date.issued | 2012 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/7258 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.1186/1471-2105-13-309 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1004937 | - |
Descrição: dc.description | Background: Epitope prediction using computational methods represents one of the most promising approaches to vaccine development. Reduction of time, cost, and the availability of completely sequenced genomes are key points and highly motivating regarding the use of reverse vaccinology. Parasites of genus Leishmania are widely spread and they are the etiologic agents of leishmaniasis. Currently, there is no efficient vaccine against this pathogen and the drug treatment is highly toxic. The lack of sufficiently large datasets of experimentally validated parasites epitopes represents a serious limitation, especially for trypanomatids genomes. In this work we highlight the predictive performances of several algorithms that were evaluated through the development of a MySQL database built with the purpose of: a) evaluating individual algorithms prediction performances and their combination for CD8+ T cell epitopes, B-cell epitopes and subcellular localization by means of AUC (Area Under Curve) performance and a threshold dependent method that employs a confusion matrix; b) integrating data from experimentally validated and in silico predicted epitopes; and c) integrating the subcellular localization predictions and experimental data. NetCTL, NetMHC, BepiPred, BCPred12, and AAP12 algorithms were used for in silico epitope prediction and WoLF PSORT, Sigcleave and TargetP for in silico subcellular localization prediction against trypanosomatid genomes. Results: A database-driven epitope prediction method was developed with built-in functions that were capable of: a) removing experimental data redundancy; b) parsing algorithms predictions and storage experimental validated and predict data; and c) evaluating algorithm performances. Results show that a better performance is achieved when the combined prediction is considered. This is particularly true for B cell epitope predictors, where the combined prediction of AAP12 and BCPred12 reached an AUC value of 0.77. For T CD8+ epitope predictors, the combined prediction of NetCTL and NetMHC reached an AUC value of 0.64. Finally, regarding the subcellular localization prediction, the best performance is achieved when the combined prediction of Sigcleave, TargetP and WoLF PSORT is used. Conclusions: Our study indicates that the combination of B cells epitope predictors is the best tool for predicting epitopes on protozoan parasites proteins. Regarding subcellular localization, the best result was obtained when the three algorithms predictions were combined. The developed pipeline is available upon request to authors. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fonte: o próprio artigo. | - |
Título: dc.title | An assessment on epitope prediction methods for protozoa genomes. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: