Multiplicity of solutions for p-biharmonic problems with critical growth.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBueno, Hamilton Prado-
Autor(es): dc.creatorLeme, Leandro Correia Paes-
Autor(es): dc.creatorRodrigues, Helder Cândido-
Data de aceite: dc.date.accessioned2025-08-21T15:07:33Z-
Data de disponibilização: dc.date.available2025-08-21T15:07:33Z-
Data de envio: dc.date.issued2018-11-20-
Data de envio: dc.date.issued2018-11-20-
Data de envio: dc.date.issued2018-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/10535-
Fonte completa do material: dc.identifierhttps://projecteuclid.org/euclid.rmjm/1528077624-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1002979-
Descrição: dc.descriptionWe prove the existence of infinitely many solutions for p-biharmonic problems in a bounded, smooth domain Ω with concave-convex nonlinearities dependent upon a parameter λ and a positive continuous function f:Ω¯¯¯¯→R. We simultaneously handle critical case problems with both Navier and Dirichlet boundary conditions by applying the Ljusternik-Schnirelmann method. The multiplicity of solutions is obtained when λ is small enough. In the case of Navier boundary conditions, all solutions are positive, and a regularity result is proved.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Título: dc.titleMultiplicity of solutions for p-biharmonic problems with critical growth.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.