Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Maboudou-Tchao, Edgard M. | - |
Autor(es): dc.creator | Silva, Ivair Ramos | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:06:59Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:06:59Z | - |
Data de envio: dc.date.issued | 2017-03-16 | - |
Data de envio: dc.date.issued | 2017-03-16 | - |
Data de envio: dc.date.issued | 2013 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/7387 | - |
Fonte completa do material: dc.identifier | https://onlinelibrary.wiley.com/doi/10.1002/sam.11209 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.1002/sam.11209 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1002728 | - |
Descrição: dc.description | Traditional multivariate tests, Hotelling’s T 2 or Wilks , are designed for a test of the mean vector under the condition that the number of observations is larger than the number of variables. For high-dimensional data, where the number of features is nearly as large as or larger than the number of observations, the existing tests do not provide a satisfactory solution because of the singularity of the estimated covariance matrix. In this article, we consider a test for the mean vector of independent and identically distributed multivariate normal random vectors where the dimension is larger than or equal to the number of observations. To solve this problem, we propose a modified Hotelling statistic. Simulation results show that the proposed test is superior to other tests available in the literature. However, because we do not know the theoretical distribution of this modified statistic, Monte Carlo methods were used to reach this conclusion. Instead of using conventional Monte Carlo methods, which perform a fixed-number of simulations, we suggest using the sequential Monte Carlo test in order to decrease the number of simulations needed to reach a decision. Simulation results show that the sequential Monte Carlo test is preferable to a fixed-sample test, especially when using computationally intensive statistical methods. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | restrito | - |
Palavras-chave: dc.subject | Covariance matrix | - |
Palavras-chave: dc.subject | Kronecker structure | - |
Palavras-chave: dc.subject | Hotelling test | - |
Palavras-chave: dc.subject | Sequential Monte Carlo | - |
Título: dc.title | Tests for mean vectors in high dimension | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: