Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorAssunção, Ronaldo Brasileiro-
Autor(es): dc.creatorMiyagaki, Olimpio Hiroshi-
Autor(es): dc.creatorLeme, Leandro Correia Paes-
Autor(es): dc.creatorRodrigues, Bruno Mendes-
Data de aceite: dc.date.accessioned2025-08-21T15:06:36Z-
Data de disponibilização: dc.date.available2025-08-21T15:06:36Z-
Data de envio: dc.date.issued2023-02-06-
Data de envio: dc.date.issued2023-02-06-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/16133-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s00009-019-1317-y-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s00009-019-1317-y-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1002588-
Descrição: dc.descriptionWe consider the following elliptic problem ⎧⎨ ⎩ − div |∇u| p−2 ∇u |y| ap = μ |u| p−2 u |y| p(a+1) + h(x) |u| q−2 u |y| bq + f(x, u) in Ω, u = 0 on ∂Ω, in an unbounded cylindrical domain Ω := {(y, z) ∈ Rm+1 × RN−m−1 ; 0 <A< |y| <B< ∞}, where A, B ∈ R+, p > 1, 1 ≤ m<N − p, q := N p N − p(a + 1 − b), 0 ≤ μ < μ := m + 1 − p(a + 1) p p , h ∈ L N q (Ω) ∩ L∞(Ω) is a positive function and f : Ω × R → R is a Carath ́eodory function with growth at infinity. Using the Krasnoselski’s genus and applying Z2 version of the Mountain Pass Theorem, we prove, under certain assumptions about f, that the above problem has infinite invariant solutions.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectSupercritical-
Palavras-chave: dc.subjectDegenerate operator-
Palavras-chave: dc.subjectVariational methods-
Título: dc.titleExistence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.