
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Gomes, David Menotti | - |
| Autor(es): dc.contributor | Gomes, David Menotti | - |
| Autor(es): dc.contributor | Bianchi, Andrea Gomes Campos | - |
| Autor(es): dc.contributor | Cámara Chávez, Guillermo | - |
| Autor(es): dc.contributor | Todt, Eduardo | - |
| Autor(es): dc.contributor | Ferreira, Anderson Almeida | - |
| Autor(es): dc.creator | Peixoto, Sirlene Pio Gomes da Silva | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T15:06:08Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T15:06:08Z | - |
| Data de envio: dc.date.issued | 2020-08-11 | - |
| Data de envio: dc.date.issued | 2020-08-11 | - |
| Data de envio: dc.date.issued | 2017 | - |
| Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/12579 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1002438 | - |
| Descrição: dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | - |
| Descrição: dc.description | Devido à degradação e baixa qualidade em imagens com ruído, como imagens de cenas naturais e CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) baseados em texto, o problema de reconhecimento de caracteres continua a ser extremamente desafiador. Neste trabalho, estudamos três abordagens diferentes de redes convolucionais (otimização de arquitetura com filtros aleatórios, aprendizado de filtros não supervisionado e supervisionado) que visam melhorar as representações de característica dessas imagens por meio de deep learning. Nós realizamos experimentos no amplamente utilizado dataset The Street View House Numbers (SVHN), em um novo dataset de CAPTCHAS criado por nós, e em um dataset de placas brasileiras. A abordagem que aprende os pesos dos filtros por meio do algoritmo back-propagation utilizando a técnica data augmentation e a estratégia de agregação de algumas camadas localmente conectadas à rede convolucional obteve resultados promissores para o dataset CAPTCHA (97,36% de acurácia para caracteres e 85,4% para CAPTCHAs) e resultados muito próximos ao estado da arte em relação ao dataset SVHN (97,45 % de acurácia para dígitos). Já no dataset de placas brasileiras, que contém um número de amostras muito inferior aos demais, a abordagem que realiza a otimização de arquitetura com filtros aleatórios obteve os resultados mais promissores. Além disso, analisamos o comportamento da abordagem deep learning que realiza o aprendizado supervisionado de filtros diante da exposição do dataset SVHN a interferências adversas. | - |
| Descrição: dc.description | Due to degradation and low quality in noisy images, such as natural scene images and CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) based on text, the character recognition problem continues to be extremely challenging. In this work, we study two different convolutional network approaches (architecture optimization with random filters, filters learning unsupervised and supervised) aiming at improving the feature representations of these images through deep learning. We perform experiments in the widely used Street View House Numbers (SVHN) dataset, in a new dataset of CAPTCHAS created by us and a dataset of Brazilian plates. The approach that learns filter weights through back-propagation algorithm using data augmentation technique and the strategy of adding few locally-connected layers to the Convolutional Network (CN) has obtained promising results to the CAPTCHA dataset (97.36% of accuracy for characters and 85.4% for CAPTCHAs) and results very close to the state-of-the-art regarding the SVHN dataset (97.45% of accuracy for digits). In dataset of Brazilian plates, which contains a number of very low samples to the other, an approach that optimizes the architecture with random filters achieved the most promising results. In addition, we analyze the behavior of the deep learning approach we perform the supervised learning of filters in the face of SVHN dataset exposure to adverse interference. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Direitos: dc.rights | aberto | - |
| Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 06/08/2020 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais. | - |
| Palavras-chave: dc.subject | Redes neurais - computação | - |
| Palavras-chave: dc.subject | Inteligência artificial | - |
| Palavras-chave: dc.subject | Aprendizado do computador | - |
| Título: dc.title | Reconhecimento de caracteres em imagens com ruído usando Deep Learning. | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - UFOP | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: