Matula numbers, Gödel numbering and Fock space.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorFrancisco Neto, Antônio-
Data de aceite: dc.date.accessioned2025-08-21T15:04:23Z-
Data de disponibilização: dc.date.available2025-08-21T15:04:23Z-
Data de envio: dc.date.issued2017-09-14-
Data de envio: dc.date.issued2017-09-14-
Data de envio: dc.date.issued2013-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/8732-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s10910-013-0178-z-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s10910-013-0178-z-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1001934-
Descrição: dc.descriptionBy making use of Matula numbers, which give a 1-1 correspondence between rooted trees and natural numbers, and a Gödel type relabelling of quantum states, we construct a bijection between rooted trees and vectors in the Fock space. As a by product of the aforementioned correspondence (rooted trees ↔ Fock space) we show that the fundamental theorem of arithmetic is related to the grafting operator, a basic construction in many Hopf algebras. Also, we introduce the Heisenberg–Weyl algebra built in the vector space of rooted trees rather than the usual Fock space. This work is a cross-fertilization of concepts from combinatorics (Matula numbers), number theory (Gödel numbering) and quantum mechanics (Fock space).-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectRooted trees-
Palavras-chave: dc.subjectHopf algebra-
Palavras-chave: dc.subjectGödel relabelling-
Palavras-chave: dc.subjectHeisenberg–Weyl algebra-
Título: dc.titleMatula numbers, Gödel numbering and Fock space.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.