
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Brito, Matheus Batagini, 1985- | - |
| Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
| Autor(es): dc.creator | Southier, Andre Luis Mussoi | - |
| Data de aceite: dc.date.accessioned | 2025-09-01T12:24:23Z | - |
| Data de disponibilização: dc.date.available | 2025-09-01T12:24:23Z | - |
| Data de envio: dc.date.issued | 2025-04-14 | - |
| Data de envio: dc.date.issued | 2025-04-14 | - |
| Data de envio: dc.date.issued | 2025-04-14 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/95958 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/95958 | - |
| Descrição: dc.description | Orientador: Prof. Dr. Matheus Batagini Brito | - |
| Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa : Curitiba, 21/02/2025 | - |
| Descrição: dc.description | Inclui referências | - |
| Descrição: dc.description | Área de concentração: Matemática | - |
| Descrição: dc.description | Resumo: O intuito deste trabalho consiste em entender as representações de dimensão finita dos grupos quânticos baseados numa álgebra de Lie de tipo An e na sua extensão afim. Utilizando resultados já bem estabelecidos, podemos reduzir o problema ao estudo das representações irredutíveis de l-peso para a álgebra de laços sobre sln+1. Dentro dessas representações, nos concentramos nos módulos de Kirillov-Reshetikhin de ordem superior, um caso particular dos módulos serpente. Trabalhando com a combinatória de (i,n) segmentos, podemos obter diversos resultados que se estendem para os KR-módulos de ordem superior e, em especial, gerar um critério de redutibilidade para o produto tensorial de determinados KR-módulos de ordem superior. Finalmente, introduzimos uma decomposição de um conjunto de números inteiros em (i,n)-segmentos, chamada (i, n)-segmentação, com o objetivo de reinterpretar alguns conceitos e resultados, de modo a auxiliar sua generalização para grupos quânticos associados a outras álgebras de Lie, a ser feita em trabalhos futuros | - |
| Descrição: dc.description | Abstract: The aim of this work is to understand the finite-dimensional representations of quantum groups based on a Lie algebra of type An and its affine extension. Using well-established results, we can reduce the problem to the study of irreducible l-weight representations for the loop algebra over sln+1. Within these representations, we focus on higher order Kirillov-Reshetikhin modules, a particular case of the snake modules. By working with the combinatorial aspects of (i,n)-segments, we can derive several results that extend to the higher order KR-modules and, in particular, generate a criterion for deciding whether or not the tensor product of certain higher order KR-modules is irreducible. Finally, we introduce a decomposition of a set of integers into (i,n)-segments, called (i, n)-segmentation, with the goal of reinterpreting some concepts and results, in order to assist in their generalization to quantum groups associated to other Lie algebras, to be addressed in future works | - |
| Formato: dc.format | 1 recurso online : PDF. | - |
| Formato: dc.format | application/pdf | - |
| Formato: dc.format | application/pdf | - |
| Palavras-chave: dc.subject | Álgebra universal | - |
| Palavras-chave: dc.subject | Módulos (Álgebra) | - |
| Palavras-chave: dc.subject | Matemática | - |
| Título: dc.title | Aspectos combinatoriais de determinados módulos serpente | - |
| Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: