Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Marchi, Carlos Henrique, 1966- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Métodos Numéricos em Engenharia | - |
Autor(es): dc.creator | Pinto, Marcio Augusto Villela | - |
Data de aceite: dc.date.accessioned | 2025-09-01T11:58:01Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T11:58:01Z | - |
Data de envio: dc.date.issued | 2025-05-12 | - |
Data de envio: dc.date.issued | 2025-05-12 | - |
Data de envio: dc.date.issued | 2006 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/8451 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/8451 | - |
Descrição: dc.description | Orientador: Carlos Henrique Marchi | - |
Descrição: dc.description | Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas e Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 2006 | - |
Descrição: dc.description | Inclui bibliografia | - |
Descrição: dc.description | Resumo: Sobre o tempo de CPU necessário para resolver problemas unidimensionais lineares e não-linear e um problema bidimensional linear, verifica-se o efeito causado por diversos valores de razão de engrossamento, vários tamanhos de malha, número de iterações internas, número de níveis de malhas, tolerâncias, estimativas iniciais, solvers, esquemas de correção (CS) e aproximação completa (FAS), diversos valores de razão de aspecto de malha e algoritmos multigrid para problemas anisotrópicos. Os problemas considerados são lineares unidimensionais (equação de difusão e de advecção-difusão), não-linear unidimensional (equação de Burgers) e linear bidimensional (equação de Laplace), todos com condições de contorno de Dirichlet. O método de diferenças finitas é usado para discretizar as equações diferenciais. Os sistemas de equações algébricas são resolvidos com diversos solvers associados ao método multigrid geométrico com ciclo V. Para os problemas isotrópicos são feitas comparações entre os esquemas CS e FAS. Para o problema anisotrópico, quatro tipos de algoritmos de engrossamento são considerados, envolvendo engrossamento padrão e semi-engrossamento. Alguns resultados confirmam os da literatura e outros novos são apresentados. Entre outros, verificou-se que: o esquema FAS é mais rápido do que o esquema CS e que o algoritmo do tipo semi-engrossamento seguido de engrossamento padrão é o mais rápido entre os quatro testados para o problema anisotrópico. | - |
Descrição: dc.description | Abstract: On the necessary CPU time to solve one-dimensional linear and nonlinear problems and a two-dimensional linear problem, one verifies the effect considered by several coarsening ratios values, several number of nodes, number of inner iterations, number of grid levels, tolerances, initial estimates, solvers, correction (CS) and full approximation schemes (FAS), several grid aspect ratios values and multigrid algorithms to anisotropic problems. The considered problems are one-dimensional linear (diffusion and advection-diffusion equations), one-dimensional nonlinear (Burgers’s equation) and two-dimensional linear (Laplace’s equation) problems with Dirichlet’s boundary conditions. The finite difference method is used to discretizate the differential equations. The algebraic systems are solved by several solvers associated to geometric multigrid method with V-cycle. Comparisons between CS and FAS schemes are made to isotropic problems. Four types of coarsening algorithms are considered, involving standard coarsening and semicoarsening to anisotropic problem. Some literature results are confirmed and some new ones are presented. The main conclusions are: the FAS scheme is faster than CS scheme and the SE-EP (partial semicoarsening) algorithm is faster than other studied algorithms to the anisotropic problem. | - |
Formato: dc.format | 238f. : il. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Calor - Transmissão | - |
Palavras-chave: dc.subject | Engenharia mecânica | - |
Palavras-chave: dc.subject | Análise numérica | - |
Título: dc.title | Comportamento do Multigrid geométrico em problemas de transferência de calor | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: