Algoritmo de aprendizado de máquina na predição de perdas não técnicas na rede elétrica de distribuição

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorOliveira, Luiz Eduardo Soares de, 1971--
Autor(es): dc.contributorUniversidade Federal do Paraná. Setor de Ciências Exatas. Curso de Especialização em Data Science & Big Data-
Autor(es): dc.creatorAguiar, Vinícius Alboneti-
Data de aceite: dc.date.accessioned2025-09-01T12:54:22Z-
Data de disponibilização: dc.date.available2025-09-01T12:54:22Z-
Data de envio: dc.date.issued2024-02-07-
Data de envio: dc.date.issued2024-02-07-
Data de envio: dc.date.issued2021-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/1884/80207-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/1884/80207-
Descrição: dc.descriptionrientador: Prof. Dr. Luiz Eduardo S. de Oliveira-
Descrição: dc.descriptionMonografia (especialização) - Universidade Federal do Paraná, Setor de Ciências Exatas, Curso de Especialização em Data Science & Big Data.-
Descrição: dc.descriptionInclui referências: p. 7-8-
Descrição: dc.descriptionResumo: As perdas não técnicas ou comerciais decorrem principalmente de furto (ligação clandestina, desvio direto da rede) ou fraude de energia (adulterações no medidor), popularmente conhecidos como "gatos", erros de medição e de faturamento. No entanto, os métodos existentes para a detecção deste comportamento de fraude são complexos e manuais. Este projeto aborda uma nova proposta para detecção de furtos de eletricidade composta por duas etapas: 1) Foram experimentadas várias características e combinadas em conjuntos caracterizados em quatro critérios: temporalidade, localidade, similaridade e infraestrutura. 2) Em seguida, foi utilizado um conjunto de características para treinar três algoritmos de aprendizado de máquina. A hipótese é que o conjunto de características derivadas apenas de dados independentes, são adequadas para uma detecção precisa de fraude. Os experimentos foram realizados utilizando dados reais de consumo de eletricidade, e os resultados mostram que o método proposto supera os métodos tradicionais em termos de detecção de fraude.-
Descrição: dc.descriptionAbstract: Non-technical or commercial losses are mainly due to theft (clandestine connection, direct network detour) or energy utilities fraud (meter tampering), popularly known as "gatos", metering and billing errors. However, existing methods for the detection of this fraud behavior are complicated and manual. This project addresses a new proposal for electricity theft detection consisting of two steps: 1) Several features were sampled and combined into sets characterized by four criteria: seasonality, location, similarity, and infrastructure. 2) Next, a set of features were used to train three machine learning algorithms. The hypothesis is that the feature sets derived only from independent data, are suitable for accurate fraud detection. The experiments were conducted utilizing real electricity consumption data, and the results show that the proposed method surpasses the traditional methods in terms of fraud detection.-
Formato: dc.format1 recurso online : PDF.-
Formato: dc.formatapplication/pdf-
Formato: dc.formatapplication/pdf-
Palavras-chave: dc.subjectAprendizado do computador-
Palavras-chave: dc.subjectInteligência artificial-
Palavras-chave: dc.subjectEnergia elétrica - Distribuição-
Palavras-chave: dc.subjectFurto-
Título: dc.titleAlgoritmo de aprendizado de máquina na predição de perdas não técnicas na rede elétrica de distribuição-
Aparece nas coleções:Repositório Institucional - Rede Paraná Acervo

Não existem arquivos associados a este item.