
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Oliveira, Luiz Eduardo Soares de, 1971- | - |
| Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Curso de Especialização em Data Science & Big Data | - |
| Autor(es): dc.creator | Alves, Thiago da Silva, 1985- | - |
| Data de aceite: dc.date.accessioned | 2025-09-01T10:58:56Z | - |
| Data de disponibilização: dc.date.available | 2025-09-01T10:58:56Z | - |
| Data de envio: dc.date.issued | 2022-04-28 | - |
| Data de envio: dc.date.issued | 2022-04-28 | - |
| Data de envio: dc.date.issued | 2019 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/75371 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/75371 | - |
| Descrição: dc.description | Orientador: Prof. Luiz Eduardo Soares de Oliveira | - |
| Descrição: dc.description | Monografia (especialização) - Universidade Federal do Paraná, Setor de Ciências Exatas, Curso de Especialização em Data Science & Big Data. | - |
| Descrição: dc.description | Inclui referências | - |
| Descrição: dc.description | Resumo: Clientes inadimplentes representam um dos maiores riscos às instituições financeiras, dado seu potencial de provocar prejuízo. Somado a isso, está o esforço para minimizar esse risco, que consome recurso com o objetivo de repará-lo. Naturalmente, uma relação de custo e benefício onde o correto destino do recurso transforma o prejuízo em retorno financeiro. Nesse contexto, o objetivo deste trabalho é explorar o uso de algoritmos de inteligência artificial baseados em aprendizado supervisionado (machine learning) para classificar clientes inadimplentes. Serão descritas as etapas desde a construção da base da dados analítica (ABT), seleção de variáveis utilizando algoritmo genético (AG) até estratégia de aprendizado considerando custo do erro de classificação, reamostragem e medidas de avaliação (Precision, Recall e F1Score) para conjutos de dados desbalanceados | - |
| Descrição: dc.description | Abstract: Overdue customers are one of the biggest threats to financial institutions, given their potencial to cause losses. Farther, is the effort to minimize this risk, wich expend resources to recover it. Clearly a cost benefit ratio, where correctly allocate resources turns losses into profits. In this context, the goal of this work is explore artificial intelligence algorithms based on supervised machine learning to classify overdue customers. Will describe steps from analytical base table (ABT) building, variable selection with genetic algorithm (GA) to learning strategy with misclassification cost, resample and evaluate metrics (Precision, Recall and F1Score) for unbalanced data | - |
| Formato: dc.format | 1 recurso online : PDF. | - |
| Formato: dc.format | application/pdf | - |
| Formato: dc.format | application/pdf | - |
| Palavras-chave: dc.subject | Algorítmos genéticos | - |
| Palavras-chave: dc.subject | Inteligencia artificial - Processamento de dados | - |
| Palavras-chave: dc.subject | Aprendizado do computador | - |
| Título: dc.title | Inteligência artificial no ciclo de crédito | - |
| Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: