Inteligência artificial no ciclo de crédito

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorOliveira, Luiz Eduardo Soares de, 1971--
Autor(es): dc.contributorUniversidade Federal do Paraná. Setor de Ciências Exatas. Curso de Especialização em Data Science & Big Data-
Autor(es): dc.creatorAlves, Thiago da Silva, 1985--
Data de aceite: dc.date.accessioned2025-09-01T10:58:56Z-
Data de disponibilização: dc.date.available2025-09-01T10:58:56Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/1884/75371-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/1884/75371-
Descrição: dc.descriptionOrientador: Prof. Luiz Eduardo Soares de Oliveira-
Descrição: dc.descriptionMonografia (especialização) - Universidade Federal do Paraná, Setor de Ciências Exatas, Curso de Especialização em Data Science & Big Data.-
Descrição: dc.descriptionInclui referências-
Descrição: dc.descriptionResumo: Clientes inadimplentes representam um dos maiores riscos às instituições financeiras, dado seu potencial de provocar prejuízo. Somado a isso, está o esforço para minimizar esse risco, que consome recurso com o objetivo de repará-lo. Naturalmente, uma relação de custo e benefício onde o correto destino do recurso transforma o prejuízo em retorno financeiro. Nesse contexto, o objetivo deste trabalho é explorar o uso de algoritmos de inteligência artificial baseados em aprendizado supervisionado (machine learning) para classificar clientes inadimplentes. Serão descritas as etapas desde a construção da base da dados analítica (ABT), seleção de variáveis utilizando algoritmo genético (AG) até estratégia de aprendizado considerando custo do erro de classificação, reamostragem e medidas de avaliação (Precision, Recall e F1Score) para conjutos de dados desbalanceados-
Descrição: dc.descriptionAbstract: Overdue customers are one of the biggest threats to financial institutions, given their potencial to cause losses. Farther, is the effort to minimize this risk, wich expend resources to recover it. Clearly a cost benefit ratio, where correctly allocate resources turns losses into profits. In this context, the goal of this work is explore artificial intelligence algorithms based on supervised machine learning to classify overdue customers. Will describe steps from analytical base table (ABT) building, variable selection with genetic algorithm (GA) to learning strategy with misclassification cost, resample and evaluate metrics (Precision, Recall and F1Score) for unbalanced data-
Formato: dc.format1 recurso online : PDF.-
Formato: dc.formatapplication/pdf-
Formato: dc.formatapplication/pdf-
Palavras-chave: dc.subjectAlgorítmos genéticos-
Palavras-chave: dc.subjectInteligencia artificial - Processamento de dados-
Palavras-chave: dc.subjectAprendizado do computador-
Título: dc.titleInteligência artificial no ciclo de crédito-
Aparece nas coleções:Repositório Institucional - Rede Paraná Acervo

Não existem arquivos associados a este item.