
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Grapiglia, Geovani Nunes, 1987- | - |
| Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
| Autor(es): dc.creator | Stella, Gabriel Felipe Dalla, 1996- | - |
| Data de aceite: dc.date.accessioned | 2025-09-01T13:09:12Z | - |
| Data de disponibilização: dc.date.available | 2025-09-01T13:09:12Z | - |
| Data de envio: dc.date.issued | 2022-05-27 | - |
| Data de envio: dc.date.issued | 2022-05-27 | - |
| Data de envio: dc.date.issued | 2021 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/75098 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/75098 | - |
| Descrição: dc.description | Orientador: Prof. Dr. Geovani Nunes Grapiglia | - |
| Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa : Curitiba, 24/02/2022 | - |
| Descrição: dc.description | Inclui referências | - |
| Descrição: dc.description | Resumo: Neste trabalho propomos dois algoritmos de otimização irrestrita. O primeiro é um método de região de confiança, onde o raio de confiança e da forma d_(k)||grad f (x_(k))|| e d_(k) pode reduzir ou aumentar a cada iteração, dependendo de quanto o passo reduziu a norma do gradiente. A principal inspiração é o método WNGrad [48]. Nos testes numéricos vemos uma competitividade com outros métodos, incluindo o método de região de confiança padrão. O segundo método apresentado e um método de descida por gradiente em contexto Riemanniano, com passo -t_(k)grad f(x_(k)), onde t_(k) tem uma atualização similar ao d_(k). Nos experimentos numéricos os resultados apontam para um bom desempenho do método comparado com a busca de Armijo. Em ambos os métodos podemos dividir em dois casos, um conservativo, levando no máximo O(e^-2) iteracões para atingir um ponto estacionário com precisão e e um flexível, levando no máximo O(|log(e)|e^-2) iteraçães para atingir um ponto estacionário com precisão e, com e > 0. | - |
| Descrição: dc.description | Abstract: In this work we proposed two algorithms of unconstrained optimization. The first one is a trust-region method, where the trust radius is given by d_(k)||grad f (x_(k))|| and d_(k) is a sequence updated in each step. The behaviour of d_(k) is inspired in the reciprocal of d_(k) from the WNGrad method [48], but with the difference that d_(k) may not be monotonically decreasing like the reciprocal of d_(k). In the numerical tests we can see that the proposed method is competitive with other methods, including the standard trust-region method. The second presented algorithm is a gradient descent method in the Riemannian context, with step -t_(k)grad f (x_(k)), where t_(k) have an update similar to d_(k). In the numerical experiments, the results indicate to a better performance compared with the Armijo’s linesearch. In both methods we can split in two cases, a conservative version taking at most O(e^-2) iterations to find an e-stationary point and a flexible version taking at most O(|log(e)|e^-2) iterations to find e-stationary point, with e > 0. | - |
| Formato: dc.format | 1 recurso online : PDF. | - |
| Formato: dc.format | application/pdf | - |
| Formato: dc.format | application/pdf | - |
| Palavras-chave: dc.subject | Algorítmos | - |
| Palavras-chave: dc.subject | Otimização matemática | - |
| Palavras-chave: dc.subject | Metodos do gradiente conjugado | - |
| Palavras-chave: dc.subject | Funções (Matemática) | - |
| Palavras-chave: dc.subject | Matemática | - |
| Título: dc.title | Adaptive trust-region and riemannian gradient descent methods without function evaluations | - |
| Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: