Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Portillo Oquendo, Higídio, 1965- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
Autor(es): dc.creator | Ricordi, Everson Luiz, 1987- | - |
Data de aceite: dc.date.accessioned | 2025-09-01T13:52:50Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T13:52:50Z | - |
Data de envio: dc.date.issued | 2022-03-25 | - |
Data de envio: dc.date.issued | 2022-03-25 | - |
Data de envio: dc.date.issued | 2020 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/74287 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/74287 | - |
Descrição: dc.description | Orientador: Dr. Higidio Portillo Oquendo | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa : Curitiba, 31/05/2019 | - |
Descrição: dc.description | Inclui referências: p. 81-82 | - |
Descrição: dc.description | Resumo: Neste trabalho, estudamos os resultados de existência, unicidade e comportamento assintótico da solução para o problema de Cauchy de equações de ondas duplamente amortecidas (amortecimento friccional ut e viscoelastico ( - delta) ut), {Utt - (delta)U + Ut - (delta)Ut = F(u), (iota) E Rn, t maior ou igual à 0, {(U, Ut)(0, (iota)) = (U0, U1)(Iota), (iota) E Rn. (1) sob a presença de não linearidades do tipo, f (u) = |u|p, |(nabla)u|p, |ut|p, com p >1. Assumimos que os dados iniciais pertencem aos conjuntos (L1 (interseção) H1) × (L1 (interseção) L2) ou (W 1,1 (interseção) H2) × (L1 (interseção) L2), e deduzimos as estimativas de energia, bem como as estimativas L¹ para a solução da parte linear deste problema. Então, mostramos a existência global de solução para (1) em qualquer espaço de dimensão n (maior ou igual à) 1 para quaisquer dados iniciais suficientemente pequenos. | - |
Descrição: dc.description | Abstract: In this work, we study the results of existence, uniqueness and asymptotic behavior of the solution to the Cauchy problem of doubly damped wave equations (frictional damping ut and viscoelastic -(delta)ut), {Utt - (delta)U + Ut - (delta)Ut = F(u), (iota) E Rn, t (bigger or equal) 0, {(U, Ut)(0, (iota)) = (U0, U1)(Iota), (iota) E Rn. under the presence of non-linearities of the type, f(u) = |u|p, |(nabla)u|p, |ut|p, with p > 1. We assume that the initial data belong to the sets (L1 (intersection) H1) × (L1(intersection) L2) ou (W 1,1 (intersection) H2) × (L1 (intersection) L2), and we derive the energy estimates, as well as the estimates L¹ for the solution of the linear part of this problem. We then show the global solution existence for (1) in any dimension space n (bigger or equal) 1 for any sufficiently small initial data. | - |
Formato: dc.format | 1 recurso online : PDF. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Equação de onda | - |
Palavras-chave: dc.subject | Matemática | - |
Título: dc.title | Comportamento assintótico para uma equação de ondas semilinear em Rn | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: