
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Beims, Marcus Werner, 1962- | - |
| Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Física | - |
| Autor(es): dc.creator | Menon, Luiz, 1994- | - |
| Data de aceite: dc.date.accessioned | 2025-09-01T11:37:08Z | - |
| Data de disponibilização: dc.date.available | 2025-09-01T11:37:08Z | - |
| Data de envio: dc.date.issued | 2022-01-13 | - |
| Data de envio: dc.date.issued | 2022-01-13 | - |
| Data de envio: dc.date.issued | 2019 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/71825 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/71825 | - |
| Descrição: dc.description | Orientador: Prof. Dr. Marcus Werner Beims | - |
| Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Física. Defesa : Curitiba, 27/02/2020 | - |
| Descrição: dc.description | Inclui referências: p. 59-63 | - |
| Descrição: dc.description | Resumo: Os expoentes de Lyapunov são uma das ferramentas mais usadas na caracterização de sistemas dinâmicos não lineares e descrevem as taxas de crescimento e contração de perturbações aplicadas a sua trajetória em diferentes direções do espaço de fase. Porem com as técnicas convencionais para a obtenção dos expoentes Lyapunov e impossível identificar a real direção dessas taxas de crescimento. Essa informação e acessível apenas através dos vetores covariantes de Lyapunov (VCLs). Embora o conceito de vetores covariantes de Lyaponov seja bem estabelecido h muito tempo, ainda não haviam algoritmos eficientes para obtenção numérica destes vetores ate o recente desenvolvimento sugerido por Ginneli e colaboradores [1]. Neste sentindo utilizamos esse procedimento para revisitar alguns resultados ja estabelecidos na literatura e na caraterização de sistemas espacialmente estendidos, mais especificamente redes mapas quadráticos acoplados e osciladores de Kuramoto-Sakaguchi, sendo que este ultimo apresenta um comportamento espaço-temporal que vem sido exaustivamente explorado, os chamados estados quimera. | - |
| Descrição: dc.description | Abstract: Lyapunov exponents are one of the most used tools in the characterization of nonlinear dynamic systems, capable of describing the growth rates of disturbances applied on trajectories in different directions of phase space. However with conventional techniques to obtain Lyapunov exponents it is impossible to identify the real direction of these growth rates. This information is accessible to covariant Lyapunov vectors. While this concept has been well established for a long time there were still no efficient algorithms for obtaining these vectors numerically until the recent development suggested by Ginneli et al.[1]. In this sense we use this procedure to revisit some results already established in the literature and also characterize some spatially developed systems. More specifically, coupled map lattice of quadratic maps and Kuramoto-Sakaguchi oscillators. The latter shows a space-time behavior that has been exhaustively explored, the so-called chimera states, consisting of the coexistence of incoherent oscillations with synchronized behavior. | - |
| Formato: dc.format | 1 arquivo (63 p.) : PDF. | - |
| Formato: dc.format | application/pdf | - |
| Formato: dc.format | application/pdf | - |
| Palavras-chave: dc.subject | Física | - |
| Palavras-chave: dc.subject | Teoria dos sistemas dinamicos | - |
| Título: dc.title | Vetores covariantes de Liapunov em sistemas espacialmente estendidos | - |
| Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: