Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Spinosa, Eduardo Jaques, 1974- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática | - |
Autor(es): dc.creator | Oliveira, Lucas Fernandes de | - |
Data de aceite: dc.date.accessioned | 2025-09-01T13:12:30Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T13:12:30Z | - |
Data de envio: dc.date.issued | 2021-06-21 | - |
Data de envio: dc.date.issued | 2021-06-21 | - |
Data de envio: dc.date.issued | 2019 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/69997 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/69997 | - |
Descrição: dc.description | Orientador: Eduardo J. Spinosa | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 09/09/2020 | - |
Descrição: dc.description | Inclui referências: p.57-59 | - |
Descrição: dc.description | Área de concentração: Ciência da Computação | - |
Descrição: dc.description | Resumo: Neste trabalho investiga-se a resolução do problema de coleta de recursos utilizando aprendizado por reforço e moldagem. Nesse problema, um agente deve explorar um ambiente desconhecido em busca de recursos e transportar esses recursos até um destino pré-definido. Quando aprendizado por reforço é utilizado, não é necessário escrever um algoritmo que controle as ações do agente, porém, esse tipo de técnica é custosa e demora para convergir. Para mitigar esses problemas em algoritmos de aprendizado existem diferentes técnicas. Neste trabalho pretende-se avaliar a técnica de moldagem. Moldagem consiste em prover ao agente informação privilegiada para guiar o aprendizado por caminhos promissores, reduzindo o esforço gasto ao explorar caminhos improdutivos durante esse processo. Para averiguar a utilidade da moldagem foi realizado um conjunto de experimentos para avaliar diferentes estratégias de moldagem em conjunto com o algoritmo de aprendizado NEAT para a resolução do problema de coleta de recursos. A partir dos resultados dos experimentos concluiu-se que moldagem afeta o treinamento do algoritmo NEAT, no entanto, melhores resultados são obtidos sem a utilização de moldagem. Palavras-chave: moldagem, aprendizado por reforço, neuroevolução, robótica, redes neurais artificiais, computação evolutiva, coleta de recursos | - |
Descrição: dc.description | Abstract: This work researches the resolution of the foraging problem using reinforcement learning and shaping. In this problem, an agent explores a unknown environment searching for resources and delivering these resources to a pre-defined location. When using reinforcement learning to solve this problem, is not required to write an algorithm to control agent actions, however, such approach is expensive and slow to converge. There are some techniques used to mitigate these problems with learning algorithms. In this work, shaping is evaluated. Shaping provide the agent with privileged information used to guide the learning through promising paths, reducing the effort spent exploring unfruitful paths. To investigate the utility of shaping, a set of experiments were realised in order to evaluate different methods of shaping combined with the learning algorithm NEAT to solve the foraging problem. The results obtained through experiments show that shaping affects the performance of NEAT training however better results are obtained without shaping. Keywords: shaping, reinforcement learning, neuroevolution, robotics, artificial neural networks, evolutionary computing, foraging | - |
Formato: dc.format | 70 p. : il. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Robotica | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Palavras-chave: dc.subject | Ciência da Computação | - |
Título: dc.title | Moldagem e aprendizado aplicados à coleta de recursos | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: