Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Grégio, André Ricardo Abed | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática | - |
Autor(es): dc.creator | Beppler, Tamy Emily | - |
Data de aceite: dc.date.accessioned | 2019-08-21T22:54:54Z | - |
Data de disponibilização: dc.date.available | 2019-08-21T22:54:54Z | - |
Data de envio: dc.date.issued | 2019-04-08 | - |
Data de envio: dc.date.issued | 2019-04-08 | - |
Data de envio: dc.date.issued | 2018 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/59444 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/59444 | - |
Descrição: dc.description | Orientador: André Ricardo Abed Grégio | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 21/12/2018 | - |
Descrição: dc.description | Inclui referências: p. 58-64 | - |
Descrição: dc.description | Resumo: A quantidade de variantes de arquivos maliciosos lançadas diariamente já fez com que a análise manual de malware se tornasse inviável há algum tempo. Para isso, foram propostos diversos tipos de análise automatizadas, entre eles a análise estática e a dinâmica, os mais utilizados atualmente. Porém, desenvolvedores de malware já conseguiram identificar as falhas de cada um deles e conseguem criar novos arquivos maliciosos que não são nem mesmo detectados pelos antivírus atuais. Para resolver esse problema, pesquisadores têm proposto outros tipos de análise e investido em métodos de classificação mais rápidos e precisos. Neste trabalho de pesquisa, é feito um levantamento bibliográfico sobre o assunto e optou-se por avaliar a classificação utilizando a análise de texturas. Foram selecionadas diversas técnicas para classificação de malware usando análise de texturas através de uma revisão sistemática da literatura. Com as técnicas encontradas foram realizados experimentos em um dataset da literatura (Malimg) e reaplicados nas amostras de um dataset local, mais robusto e semelhante ao cenário do mundo real. Em ambos o algoritmo KNN apresenta os melhores resultados de classificação, mostrando-se a alternativa mais viável em direção à solução do problema de agrupamento de variantes de programas maliciosos em suas famílias corretas através da análise de texturas. As técnicas de classificação usando o descritor global GIST obtêm maior taxa de acerto quando comparadas com o descritor local LBP e o uso de uma escala maior das texturas também apresenta melhor resultado. O dataset local atinge resultados bons apenas após uma seleção de dados, apresentando uma discussão sobre o uso de datasets não apropriados pela literatura para construção de classificadores genéricos de malware. Quanto a resiliência às técnicas de ofuscação utilizadas por criadores de malware para descaracterizar um binário, os experimentos ainda apontam como outra falsa teoria sobre a análise de texturas, pois apresenta resultados de classificação bastante ruins mesmo quando utilizadas técnicas bastante simples. A análise de texturas apresenta bons resultados apenas para variantes muito similares, não podendo ser utilizadas num cenário real onde há uma grande variedade de famílias e uso de técnicas bastante sofisticadas de ofuscação. Palavras-chave: Segurança computacional. Malware. Análise de textura. Classificação de malware. Visualização de malware. | - |
Descrição: dc.description | Abstract: The number of malicious software variants released daily turned manual malware analysis into an impractical task a long time ago. Due to that, automated analysis techniques were proposed, such as static and dynamic code analysis, which are the most used nowadays for the malware problem. However, malware authors already identified the shortcomings of each one of these analysis types so as to create new malicious files that are not even detected by current antiviruses. To solve this problem, researchers have proposed other types of analysis and invested in faster and more accurate classification methods. In this research work, I did a bibliographic survey on the subject, which led to the decision of performing classification using texture analysis. Several techniques were filtered to classify malware using texture analysis through a literature systematic review. Experiments were carried out with these techniques applied in a literature dataset (Malimg) and then reapplied to the samples of our lab's malware dataset, more robust and similar to the real world scenario. In both datasets, KNN algorithm presented the best classification results, showing that it is the most viable approach towards solving the problem of grouping malware variants correctly into their families based on texture analysis. The classification techniques using the global descriptor GIST obtain a higher accuracy rate when compared to the local LBP descriptor and the use of a larger scale of the textures also presents better results. The local dataset achieves good results only after a data selection, presenting a discussion on the use of non-appropriate datasets in the literature for building generic malware classifiers. Related to the resilience to obfuscation techniques used by malware writers to deprive a binary, the experiments also point to another false theory about texture analysis, since it presents very bad results even when using fairly simple techniques. The texture analysis presents good results only for very similar variants, and can not be used in a real world scenario where there is a great variety of families and use of quite sophisticated techniques of obfuscation. Keywords: Computer security. Malware. Texture analysis. Malware classification. Malware visualization. | - |
Formato: dc.format | 144 p. : il. (algumas color.). | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Computadores - Medidas de segurança | - |
Palavras-chave: dc.subject | Ciência da Computação | - |
Palavras-chave: dc.subject | Redes de computadores - Administração | - |
Título: dc.title | Avaliação de técnicas de análise de texturas para classificação de famílias de malware | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: