Novel procedures for graph edge-colouring

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCarmo, Renato Jose da Silva, 1965--
Autor(es): dc.contributorGuedes, Andre Luiz Pires, 1966--
Autor(es): dc.contributorUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática-
Autor(es): dc.creatorZatesko, Leandro Miranda, 1988--
Data de aceite: dc.date.accessioned2019-08-21T23:33:34Z-
Data de disponibilização: dc.date.available2019-08-21T23:33:34Z-
Data de envio: dc.date.issued2019-03-27-
Data de envio: dc.date.issued2019-03-27-
Data de envio: dc.date.issued2018-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/1884/58639-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/1884/58639-
Descrição: dc.descriptionOrientador: Dr. Renato Carmo-
Descrição: dc.descriptionCoorientador: Dr. André Luiz Pires Guedes-
Descrição: dc.descriptionTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018-
Descrição: dc.descriptionInclui referências e índice-
Descrição: dc.descriptionÁrea de concentração: Ciência da Computação-
Descrição: dc.descriptionResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).-
Descrição: dc.descriptionAbstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76).-
Formato: dc.format124 p. : il.-
Formato: dc.formatapplication/pdf-
Formato: dc.formatapplication/pdf-
Palavras-chave: dc.subjectTeoria dos grafos-
Palavras-chave: dc.subjectCiência da Computação-
Palavras-chave: dc.subjectAlgoritmos de computador-
Título: dc.titleNovel procedures for graph edge-colouring-
Aparece nas coleções:Repositório Institucional - Rede Paraná Acervo

Não existem arquivos associados a este item.