Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Machado, Álvaro Muriel Lima | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências da Terra. Programa de Pós-Graduação em Ciências Geodésicas | - |
Autor(es): dc.creator | Moiane, André Fenias | - |
Data de aceite: dc.date.accessioned | 2019-08-21T23:55:28Z | - |
Data de disponibilização: dc.date.available | 2019-08-21T23:55:28Z | - |
Data de envio: dc.date.issued | 2018-10-10 | - |
Data de envio: dc.date.issued | 2018-10-10 | - |
Data de envio: dc.date.issued | 2018 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/57485 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/57485 | - |
Descrição: dc.description | Orientador: Prof. Dr. Álvaro Muriel Lima Machado | - |
Descrição: dc.description | Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências da Terra, Programa de Pós-Graduação em Ciências Geodésicas. Defesa : Curitiba, 06/09/2018 | - |
Descrição: dc.description | Inclui referências: p.89-99 | - |
Descrição: dc.description | Resumo: Esta tese investiga um método de classificação alternativo que integra o algoritmo de clusterização Propagação de Afinidade baseado nas Classes (PAC) e o Classificador Máxima Verossimilhança (MAXVER) com vista a superar as limitações do MAXVER na classificação de dados de alta dimensionalidade e, assim, melhorar a sua acurácia. O novo classificador foi designado PAC-MAXVER, e compreende duas abordagens, seleção de características espectrais e classificação de imagem. O algoritmo de clusterização PAC foi usado para realizar a redução de dimensionalidade da imagem e seleção de características enquanto o MAXVER foi utilizado para a classificação da imagem. O desempenho do MAXVER em termos de acurácia da classificação e tempo de processamento é determinado em função da taxa de seleção realizada na fase de clusterização PAC. O desempenho de PACMAXVER foi avaliado e validado usando duas cenas hiperespectrais do AVIRIS (Airborne Visible Infrared Imaging Spectrometer) e HYDICE (Hyperspectral Digital Imagery Collection Experiment). Os resultados da classificação mostram que PACMAXVER observou uma enorme melhoria na acurácia, atingindo 94,15% e 96,47%, respectivamente para imagem AVIRIS e HYDICE se comparado com o MAXVER, que obteve 85,42% e 81,50%. Esses valores obtidos pelo PAC-MAXVER melhoraram a acurácia da classificação MAXVER em 8,73% e 14,97% para essas imagens. Os resultados também mostraram que o PAC-MAXVER teve um bom desempenho, mesmo para as classes com número limitado de amostras de treinamento, superando as limitações do MAXVER. Palavras-chave: Propagação de Afinidade. Máxima Verossimilhança. Seleção de bandas. Integração. Classificação. Imagens hiperespectrais. | - |
Descrição: dc.description | Abstract: This thesis investigates an alternative classification method that integrates Class-based Affinity Propagation (CAP) clustering algorithm and Maximum Likelihood Classifier (MLC) with the purpose of overcome the MLC limitations in the classification of high dimensionality data, and thus improve its accuracy. The new classifier was named CAP-MLC, and comprises two approaches, spectral feature selection and image classification. CAP clustering algorithm was used to perform the image dimensionality reduction and feature selection while the MLC was employed for image classification. The performance of MLC in terms of classification accuracy and processing time is determined as a function of the selection rate achieved in the CAP clustering stage. The performance of CAP-MLC has been evaluated and validated using two hyperspectral scenes from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and the Hyperspectral Digital Imagery Collection Experiment (HYDICE). Classification results show that CAP-MLC observed an enormous improvement in accuracy, reaching 94,15% and 96,47% respectively for AVIRIS and HYDICE images if compared with MLC, which had 85,42% and 81,50%. These values obtained by CAP-MLC improved the MLC classification accuracy in 8,73% and 14,97% for these images. The results also show that CAP-MLC performed well, even for classes with limited training samples, surpassing the limitations of MLC. Keywords: Affinity Propagation. Maximum Likelihood Classifier. Band selection. Integration. Classification. Hyperspectral imagens. | - |
Formato: dc.format | 99 p. : il. (algumas color.), tabs. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Sensoriamento remoto | - |
Palavras-chave: dc.subject | Geodésia | - |
Palavras-chave: dc.subject | Verossimilhança (Estatística) | - |
Palavras-chave: dc.subject | Imagens digitais | - |
Palavras-chave: dc.subject | Teses | - |
Título: dc.title | Integração do algoritmo de clusterização propagação de afinidade e o classificador paramétrico máxima verossimilhança para classificação de imagens hiperspectrais | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: