Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Alvares, Edson Ribeiro | - |
Autor(es): dc.contributor | Braga, Clezio Aparecido | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
Autor(es): dc.creator | Batista, Wesley dos Santos Villela | - |
Data de aceite: dc.date.accessioned | 2025-09-01T10:35:02Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T10:35:02Z | - |
Data de envio: dc.date.issued | 2024-05-02 | - |
Data de envio: dc.date.issued | 2024-05-02 | - |
Data de envio: dc.date.issued | 2017 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/50359 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/50359 | - |
Descrição: dc.description | Orientador: Dr. Edson Ribeiro Alvares | - |
Descrição: dc.description | Coorientador: Dr. Clezio Aparecido Braga | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática Aplicada. Defesa: Curitiba, 21/02/2017 | - |
Descrição: dc.description | Inclui referências: f. 91-92 | - |
Descrição: dc.description | Resumo: O presente trabalho possui dois objetivos distintos. O primeiro e realizar um estudo a respeito de uma aplicação, introduzida por Keller e Vossieck em [13], que expressa uma bije.ao entre os An-quivers e os conjuntos tilting completos em V b(kAn). A motivação para estudarmos essa aplicação e o fato de Keller e Vossieck provarem a bije.ao e nao mostrarem a deducao da aplicação. Nosso objetivo e apresentar de forma intuitiva a razão pela qual a aplicação funciona. Nosso segundo objetivo e fazer um estudo da classificação, feita por Keller e Vossieck em [13], de certos tipos de aisles U de Db(kA), em que A e um quiver do tipo Dynkin. Keller e Vossieck introduziram dois tipos de aisles em uma categoria triangulada T, os aisles fieis e os aisles separ.veis. Um aisle e dito fiel se a inclusão U ^ T se estende a uma S-equivalencia Db(U0) ^ UneN U [-n], e um aisle e dito separável se HneN U[n] = 0. Em [13], Keller e Vossieck classificam os aisles fieis afirmando que existe uma bijecção entre eles e os conjuntos tilting completos. Estamos interessados em estudar uma classificação parecida para os aisles separáveis, através de uma bije..o entre eles e os conjuntos silting de Db(kA). No ultimo cap.tulo mostraremos como e poss.vel usufruir dos resultados vistos nos capítulos anteriores, utilizando-os como ferramentas na teoria tilting. | - |
Descrição: dc.description | Abstract: The present work has two distinct objectives. The first is to make a study about a map p introduced by Keller and Vossieck in [13], which expresses a bijection between An-quivers and the complete tilting sets in V b(kAn). The motivation for studying this map is that Keller and Vossieck prove the bijection but do not show the deduction of the application <^. Our objective is to present intuitively why the application works. The second objective is to make a study of the classification, made by Keller and Vossieck in [13], of aisles U C Db(kA), where A is a Dynkin-quiver. Keller and Vossieck introduced two types of aisle into a triangulated category T, the faithful aisle and the separable aisle. An aisle is said to be faithful if the inclusion U0 ^ T extends to an S-equivalence Db(U0) ^ UneNU[-n]; it is separated if HneNU[n] = 0. In [13], Keller and Vossieck classify the faithful aisles by a bijection between them and the complete tilting sets. We are interested in studying a similar classification for the separable aisles, through a bijection between them and the silting sets of Db(kA). In the last chapter we will show how it is possible to take advantage of the results seen in previous chapters, using them as tools in tilting theory. | - |
Formato: dc.format | 92 f. : il. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Matemática aplicada | - |
Palavras-chave: dc.subject | Geometria algebrica | - |
Palavras-chave: dc.subject | Funções abelianas | - |
Palavras-chave: dc.subject | Álgebra homológica | - |
Título: dc.title | Um estudo sobre os conjuntos tilting e a relação entre os silting e os aisles separáveis | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: