Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ceccon, Jurandir, 1974- | - |
Autor(es): dc.contributor | Portillo Oquendo, Higídio | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
Autor(es): dc.creator | Alves, Marcos Teixeira | - |
Data de aceite: dc.date.accessioned | 2019-08-22T00:05:31Z | - |
Data de disponibilização: dc.date.available | 2019-08-22T00:05:31Z | - |
Data de envio: dc.date.issued | 2018-06-07 | - |
Data de envio: dc.date.issued | 2018-06-07 | - |
Data de envio: dc.date.issued | 2016 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/44044 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/44044 | - |
Descrição: dc.description | Orientador : Jurandir Ceccon | - |
Descrição: dc.description | Co-orientador : Higidio Portillo Oquendo | - |
Descrição: dc.description | Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa: Curitiba, 24/02/2016 | - |
Descrição: dc.description | Inclui referências : f. 105-107 | - |
Descrição: dc.description | Área de concentração: Equações diferenciais parciais | - |
Descrição: dc.description | Resumo: Seja (M , g ) uma variedade Riemanniana suave, compacta, sem bordo com dimensão n > 2 . Inicialmente, provamos que a desigualdade de Moser Riemanniana ótima: \u\r dvg^j < ^ A (p ,n ) p \Vgu\p dvg^j + Bapt ^ J \u\p dv^j ^ \u\p dv^j é válida para toda função u G H l'p(M) com p > 1, r = Ah±e1 e 1 < r < m in{2,p}, No caso em que 1 < r < m in{2 ,p}, ocorre a existência de funções extremais. Em seguida, mostramos a validade da desigualdade de p-entropia Riemanniana ótima. Precisamente, estabelecemos que para toda função u G H 1,P(M) com ||tt||LP(M) = 1, verifica-se J \u\p log(\u\p) dvg < ~ log \V gu\p dvg^j + B( p,r) em que p > 1 e 1 < r < m in{2 ,p}, Quando 1 < r < m in{2 ,p} ou r = p < 2 , a desigualdade acima admite função extremaL. Além disso, aplicamos a desigualdade de p-entropia Riemanniana ótima para garantir que o semigrupo associado ao problema de Cauchy com equação de difusão não linear: Ut = Ap i u ^ ) em que {x, t) G M x (0, +oo), u(-, 0) = / para algum dado inicial / G L l (M), f > 0 é hipercontrativo. Por fim, mostramos a validade da desigualdade de r-entropia Riemanniana ótima, isto é, para toda função u G H 1,P(M) com ||t(||lgm ) = 1, tem-se \u\r log(\u\r) dv9 < ------- r^ - -----log IM np - nr + pr Aent / \V9u\P dvg + Bent / \u\P dvg Jm Jm com 1 < r < p < 2, Se 1 < r < p < 2, então existe função extremal. Palavras-chave: constantes ótimas, desigualdades ótimas, desigualdade de Moser, desigualdades de entropia. | - |
Descrição: dc.description | Abstract: Let (M, g) be a smooth compact Riemannian manifold of dimension n > 2 without boundary. First, we prove the validity of the optimal Moser inequality: I \u\r dvg^j < ^A(p,n)p \Vgu\p dvg^j + Bapt ^ J \u\p dv^j ^ \u\p dvg for all function u G H 1,P(M) where p > 1, r = anci 1 < T < min{2,p}, We prove the existence of an extremal function for the optimal inequality above when 1 < r < m in{2 ,p}. Next, we establish the validity of the general optimal Lp-entropv: J \u\p log(\u\p) dvg < ^ lo g \Vgu\p dvg^j + B(p,r) for all function u G H 1,P(M) with ||tt||LP(M) = 1 where p > 1 and 1 < rm in {2 ,p }. When 1 < r < m in{2,p} we show the existence of an extremal function. Using this inequality, we prove that the semigroup associated with the Cauchy problem Ut = Ap i u ^ ) em que {x, t) G M x (0, +oo), u(-, 0) = / for some / G L l (M), f > 0 is hypercontractive. Finally, we show the validity of the optimal Lr-entropv: \u\r log(\u\r) dv9 < ------- -Y----- log IM np - nr + pr Aent / \ VgU\P dvg + Bent / \u\P dvg J m J m for all functions u G H 1,P(M) with \ \ u \ \ L r = 1 where 1 < r < p < 2, If 1 < r < p < 2 we show there exists an extremal function. K eyw ords: Best constants, Optimal inequalities, Moser inequality, Entropy inequalities. | - |
Formato: dc.format | 107 f. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Matemática aplicada | - |
Palavras-chave: dc.subject | Desigualdades (Matemática) | - |
Palavras-chave: dc.subject | Geometria riemaniana | - |
Palavras-chave: dc.subject | Teses | - |
Título: dc.title | Desigualdades ótimas de entropia e moser em variedades riemannianas : três contribuições em análise geométrica | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: