Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ceccon, Jurandir, 1974- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
Autor(es): dc.creator | Formehl, Thiago | - |
Data de aceite: dc.date.accessioned | 2025-09-01T11:40:23Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T11:40:23Z | - |
Data de envio: dc.date.issued | 2024-05-02 | - |
Data de envio: dc.date.issued | 2024-05-02 | - |
Data de envio: dc.date.issued | 2016 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/43496 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/43496 | - |
Descrição: dc.description | Orientador: Prof. Dr. Jurandir Ceccon | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa: Curitiba, 24/02/2016 | - |
Descrição: dc.description | Inclui referências : f. 63-64 | - |
Descrição: dc.description | Área de concentração: Matemática | - |
Descrição: dc.description | Resumo: Neste trabalho, analisamos a regularidade L1 de minimizantes para o funcional _ : W1;2 0 (;Rk) ! R dado por _(u) = Z jruj2dx ?? Z G(u)dx; restrito ao conjunto EF = fu 2 W1;2 0 (;Rk) : R F(u)dx = 1g, em que é um subconjunto aberto e limitado de Rn, F e G são funções contínuas e homogêneas de graus 2_ e 2, respectivamente. Previamente algumas condições são estabelecidas para a existência desses minimizantes. Além disso, supondo F e G funções de classe C1 e definindo f(u) = 1 2_ rF(u) e g(u) = 1 2 rG(u), alguns resultados sobre a existência de soluções não triviais para o sistema 8< : ??_u = f(u) + g(u) em ; u = 0 sobre @ são demonstrados. | - |
Descrição: dc.description | Abstract: In this work, we analyse the L1 regularity of minimizers for the functional _ : W1;2 0 (;Rk) ! R given by _(u) = Z jruj2dx ?? Z G(u)dx; constrained to the set EF = fu 2 W1;2 0 (;Rk) : R F(u)dx = 1g, where is bounded open subset of Rn, F and G are homogeneous continuous functions of degree 2_ and 2, respectively. Previously some conditions are established for existence of these minimizers. Moreover, assuming F and G are C1 functions and setting f(u) = 1 2_ rF(u) and g(u) = 1 2 rG(u), some results about existence of nontrivial solutions to the system 8< : ??_u = f(u) + g(u) em ; u = 0 sobre @ are demonstrated. | - |
Formato: dc.format | 64 f. : il. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Matemática | - |
Palavras-chave: dc.subject | Sobolev, Espaço de | - |
Título: dc.title | Limitação uniforme de minimizantes de funcionais não suaves | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: