Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Kirilov, Alexandre, 1972- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
Autor(es): dc.creator | Moraes, Wagner Augusto Almeida de | - |
Data de aceite: dc.date.accessioned | 2025-09-01T11:42:25Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T11:42:25Z | - |
Data de envio: dc.date.issued | 2024-05-02 | - |
Data de envio: dc.date.issued | 2024-05-02 | - |
Data de envio: dc.date.issued | 2016 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/43129 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/43129 | - |
Descrição: dc.description | Orientador: Prof. Dr. Alexandre Kirilov | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa: Curitiba, 26/02/2016 | - |
Descrição: dc.description | Inclui referências : f. 48-49 | - |
Descrição: dc.description | Área de concentração: Matemática | - |
Descrição: dc.description | Resumo: A partir do conceito de operadores invariantes em relação a uma decomposição de um espaço de Hilbert em subespaços de dimensão finita, introduzimos o símbolo do operador em relação a essa decomposição. Esse símbolo é uma sequência de matrizes cujas propriedades permitem, por exemplo, afirmar se o operador está em alguma classe de Schatten-von Neumann e se é possível estende-lo a um operador limitado. Usamos esses resultados para decompor o espaço de Hilbert L2(M), sobre uma variedade suave compacta orientavel sem bordo M, como soma direta de autoespaços de um operador diferencial el?tico autoadjunto positivo e estudamos propriedades que os operadores invariantes possuem neste espaço. Por fim, obtemos resultados acerca da hipoeliticidade Global de operadores invariantes sobre M analisando seu símbolo. | - |
Descrição: dc.description | Abstract: From the idea of invariant operators relative to a fixed partition of a Hilbert space into a direct sum of finite dimensional subspaces, we introduce the operator's symbol relative to this decomposition. This symbol is a sequence of matrices whose properties allow us, for example, to state if the operator belong to some Schatten-von Neumann class and if it can be extended to a bounded operator. We apply this results to decompose the Hilbert space L2(M), where M is a orientable compact smooth manifold without boundary, as direct sum of eigenspaces of a positive self-adjoint elliptic differential operator and then we study some properties that the invariants operators have in this space. Finally, we obtain results about global hypoellipticity of invariant operators on M analyzing their symbol. | - |
Formato: dc.format | 49 f. : il. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Matematica | - |
Palavras-chave: dc.subject | Operadores elipticos | - |
Palavras-chave: dc.subject | Hilbert, Espaço de | - |
Título: dc.title | Hipoeliticidade global para operadores fortemente invariantes | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: