Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Mine, Miriam Rita Moro, 1952- | - |
Autor(es): dc.contributor | Kaviski, Eloy, 1952- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental | - |
Autor(es): dc.creator | Steinstrasser, Carlos Eduardo | - |
Data de aceite: dc.date.accessioned | 2025-09-01T11:42:03Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T11:42:03Z | - |
Data de envio: dc.date.issued | 2024-07-23 | - |
Data de envio: dc.date.issued | 2024-07-23 | - |
Data de envio: dc.date.issued | 2005 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/4284 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/4284 | - |
Descrição: dc.description | Orientadora: Miriam Rita Moro Mine | - |
Descrição: dc.description | Coorientador: Eloy Kaviski | - |
Descrição: dc.description | Inclui apêndice | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Recursos Hídricos e Ambientais. Defesa: Curitiba, 2005 | - |
Descrição: dc.description | Inclui bibliografia | - |
Descrição: dc.description | Resumo: O estágio de desenvolvimento dos computadores está intimamente associado ao desenvolvimento dos métodos numéricos. Neste ambiente, é possível que despontem novos processos de resoluçao de equaçoes diferenciais parciais, e que métodos descartados no passado possam ser reavaliados. Este trabalho propoe-se a verificar esta possibilidade. Um método explícito de diferenças finitas – Método Difusivo de Lax – foi escolhido para solucionar problemas modelados pelas equaçoes completas de Saint Venant. O método provou ser estável, convergente e suficientemente preciso para aplicaçoes práticas, se: a condiçao de Courant for atendida; as condiçoes iniciais e de contorno estiverem perfeitamente definidas; as premissas usadas na derivaçao das equaçoes de Saint Venant nao forem ultrapassadas e a soluçao nao apresentar ondas de choque. Para o caso de propagaçao de vazoes em rios com largura variável, foi desenvolvido um procedimento de avaliaçao da contribuiçao lateral que, nos dois casos estudados, determinou um erro médio, entre as vazoes calculadas e medidas no campo, da ordem de 6%. Com pequenas adaptaçoes no programa computacional básico, o método mostrou ser igualmente eficiente no cálculo de uma rede de canais interligados. Vários problemas encontrados em publicaçoes técnicas foram recalculados e os resultados comparados. | - |
Descrição: dc.description | Abstract: In the last decade computers had their processing capacity improved to unforeseeable possibilities. Processes to solve partial differential equations will certainly be impacted by their ever-increasing speed and storage capacity. As a consequence, simpler numerical methods may be devised and old forgotten ones revived. This work experiments on this possibility. A very basic explicit numerical method – Lax diffusive method – was chosen to solve the complete Saint Venant’s equations. The method proved to be stable and convergent, provided that: time step is slightly stricter than the Courant condition; initial and boundary conditions are perfectly defined; Saint Venant’s basic assumptions are not trespassed; and shock waves are not present in the solution. The same method also demonstrated to be equally efficient to solve a network of interconnected channels. It was also suggested a procedure to estimate the lateral inflow in flood routing based on historical river data. It was tested in two case studies with promising results. | - |
Formato: dc.format | vii, 101f. : grafs., tabs. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Hidrodinamica - Modelos matemáticos | - |
Palavras-chave: dc.subject | Abastecimento de água | - |
Palavras-chave: dc.subject | Recursos Hídricos | - |
Título: dc.title | Método Difusivo de Lax aplicado na solução das equações de Saint Venant | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: