Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Pimentel, Andrey Ricardo, 1965- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática | - |
Autor(es): dc.creator | Koschevic, Marcela Turim | - |
Data de aceite: dc.date.accessioned | 2019-08-21T23:19:05Z | - |
Data de disponibilização: dc.date.available | 2019-08-21T23:19:05Z | - |
Data de envio: dc.date.issued | 2017-03-20 | - |
Data de envio: dc.date.issued | 2017-03-20 | - |
Data de envio: dc.date.issued | 2015 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/40885 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/40885 | - |
Descrição: dc.description | Orientador : Prof. Dr. Andrey Ricardo Pimentel | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 25/08/2015 | - |
Descrição: dc.description | Inclui referências : f. 109-114 | - |
Descrição: dc.description | Resumo: A utilização de sistemas tutores inteligentes para a recomendação de conteúdos e exercícios é um assunto explorado por alguns pesquisadores. Muitos deles usam técnicas da inteligência artificial para fazer essas recomendações. A proposta desse trabalho é utilizar uma abordagem diferenciada das tradicionais para fazer esse processo. A abordagem usada neste trabalho é a teoria qualitativa dos processos, uma ontologia definida dentro a inteligência artificial que usa métodos de modelagem semelhantes ao processo de cognição humana. Nesse ponto a modelagem de um sistema torna-se interessante pois faz o uso de relações causais para definir o comportamento do sistema. Nesta pesquisa encontra-se um estudo sobre as principais abordagens para sistemas tutores inteligentes e também um estudo sobre a teoria do raciocínio qualitativo. Foi desenvolvida uma arquitetura que permite explorar o uso da teoria do raciocínio qualitativo como forma de modelar um domínio de conhecimento. Relações causais foram aplicadas nesse domínio de conhecimento para que seja possível estimar qual o melhor conteúdo ou a melhor questão que pode ser recomendada para estudantes que utilizam o sistema. Como estudo de caso, foram simulados cenários onde a disciplina de orientação a objetos foi usada como exemplo. Estes cenários exploraram o comportamento do sistema de recomendação para determinadas ações do estudante, sendo elas positivistas, negativistas ou intermediárias. A conclusão sobre os resultados foi analisada sob a ótica da teoria qualitativa dos processos e descrita na arquitetura e no estudo de caso. Os principais resultados obtidos indicam que é possível fazer recomendações de conteúdos e exercícios por meio do processo de modelagem apresentado nesta arquitetura. Palavras-chave: Sistemas tutores inteligentes, teoria do raciocínio qualitativo, teoria qualitativa dos processos, próximo melhor exercício. | - |
Descrição: dc.description | Abstract: The use of intelligent tutoring systems for recommending content and exercises is a subject explored by some researchers. Many of them use techniques of artificial intelligence to make these recommendations. The purpose of this work is to use a different approach from traditional to do this process. The approach used in this study is the qualitative processes theory, a defined ontology in artificial intelligence, but using modeling methods similar to human cognition process. At this point modeling a system becomes interesting because it makes use of causal relationship to define system behavior. This research is a study of the main approaches to intelligent tutoring systems and also a study on the qualitative reasoning theory. Was developed an architecture that allows you to explore the use of the qualitative reasoning theory as a way to model a domain of knowledge. Causal relationships have been applied in this area of knowledge so that it is possible estimate what the best content and the best issue that can be recommended for students who use the system. As a case study, we simulated scenarios in which the discipline of object orientation was used as an example. These scenarios explored the recommendation system behavior for certain student actions, they being positivist, negativistic or intermediate. The conclusion on the results was analyzed from the perspective of qualitative processes theory and described in the architecture and in the case study. The main results indicate that it is possible to make content recommendations and exercises through the modeling process presented in this architecture. Keywords: intelligent tutoring systems, qualitative reasoning theory, qualitative processes theory, better next exercise. | - |
Formato: dc.format | 114 f. : il. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Ciência da computação | - |
Palavras-chave: dc.subject | Sistemas tutoriais inteligentes | - |
Palavras-chave: dc.subject | Inteligencia artificial - Aplicações educacionais | - |
Palavras-chave: dc.subject | Aprendizagem - Métodos de ensino | - |
Palavras-chave: dc.subject | Teses | - |
Título: dc.title | Arquitetura para sistemas tutores inteligentes que utiliza a teoria qualitativa de processos para recomendação de próximos melhores exercícios | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: