Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Oliveira, Luiz Eduardo Soares de, 1971- | - |
Autor(es): dc.contributor | Sabourin, Robert | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática | - |
Autor(es): dc.creator | Gonçalves, Diego Bertolini | - |
Data de aceite: dc.date.accessioned | 2019-08-22T00:05:55Z | - |
Data de disponibilização: dc.date.available | 2019-08-22T00:05:55Z | - |
Data de envio: dc.date.issued | 2014-09-05 | - |
Data de envio: dc.date.issued | 2014-09-05 | - |
Data de envio: dc.date.issued | 2014 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/36064 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/36064 | - |
Descrição: dc.description | Resumo: A verificação e identificação de escritores são atividades relacionadas a ciências forense, na qual possuem a função de auxiliar na identificação ou constatação de fraudes de documentos manuscritos. A tarefa de verificar ou identificar escritores através de sua escrita manuscrita disposta em papel torna-se árdua devido as semelhanças existentes entre a escrita de diferentes escritores e também devido a variabilidade da escrita de uma mesma pessoa. Inserido neste contexto, este trabalho discute o uso de descritores de textura para o processo de verificação e identificação de escritores. Três diferentes descritores de textura foram avaliados para elaboração desta tese, GLCM (Gray Level Co-occurrence Matrix), LBP (Local Binary Pattern) e LPQ Local Phase Quantization. Além disso, empregamos um esquema de classificação baseado na representação da dissimilaridade, o qual tem contribuído para o sucesso em problemas de verificação de escritores. Inicialmente tratamos de algumas questões, como o desempenho dos descritores e parâmetros do sistema escritor-independente. Observamos outras questões importantes relacionadas com a representação dissimilaridade, tais como o impacto do numero de referencias utilizadas para verificação e identificação de escritores, e o número de escritores empregados no conjunto de treinamento. A partir destes primeiros experimentos, foi possível verificar que o número de escritores no conjunto de treinamento impactava menos que se supunha no desempenho do sistema. Para verificar todos estes objetivos, realizamos experimentos com duas diferentes bases de dados: BFL (Brazilian Forensic Letter Database) e IAM (Institut fur Informatik und angewandte Mathematik), as quais são manuscritas em diferentes línguas e contendo números de escritores díspares. Em sequencia, comparamos a abordagem baseada na dissimilaridade com outras estratégias escritor-dependente. Em uma segunda etapa de experimentos avaliamos o impacto de diferentes estilos de escrita, assim como: texto-dependente, texto-independente, caixa alta e falsificação (escrita dissimulada). Para isso, utilizamos a base Firemaker a qual e a única base pública a possuir estes quatro diferentes estilos. Por fim avaliamos a abordagem de seleção de escritores a qual tem por finalidade selecionar escritores para geração de modelos robustos. Através de uma serie de experimentos, percebemos que ambos os descritores de textura LBP e LPQ são capazes de superar os resultados anteriores descritos na literatura para o problema de verificação por cerca de 5 pontos percentuais. Para o problema de identificação de escritores, o uso do descritor LPQ foi capaz de alcançar melhores taxas de acertos globais, 96,7 % e 99,2 % para as bases BFL e IAM, respectivamente. Com relação aos diferentes estilos de escrita, notamos que a abordagem apresenta-se robusta para diferentes estilos incluindo a falsificação, apresentando desempenho superior aos descritos em literatura. Por fim, utilizando a abordagem de seleção de escritores, foi possível alcançar desempenho igual ou superior utilizando cerca de 50% dos escritores disponíveis no conjunto de treinamento. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Título: dc.title | Identificação e verificação de escritores usando características texturais e dissimilaridade | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: