Identificação e verificação de escritores usando características texturais e dissimilaridade

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorOliveira, Luiz Eduardo Soares de, 1971--
Autor(es): dc.contributorSabourin, Robert-
Autor(es): dc.contributorUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática-
Autor(es): dc.creatorGonçalves, Diego Bertolini-
Data de aceite: dc.date.accessioned2019-08-22T00:05:55Z-
Data de disponibilização: dc.date.available2019-08-22T00:05:55Z-
Data de envio: dc.date.issued2014-09-05-
Data de envio: dc.date.issued2014-09-05-
Data de envio: dc.date.issued2014-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/1884/36064-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/1884/36064-
Descrição: dc.descriptionResumo: A verificação e identificação de escritores são atividades relacionadas a ciências forense, na qual possuem a função de auxiliar na identificação ou constatação de fraudes de documentos manuscritos. A tarefa de verificar ou identificar escritores através de sua escrita manuscrita disposta em papel torna-se árdua devido as semelhanças existentes entre a escrita de diferentes escritores e também devido a variabilidade da escrita de uma mesma pessoa. Inserido neste contexto, este trabalho discute o uso de descritores de textura para o processo de verificação e identificação de escritores. Três diferentes descritores de textura foram avaliados para elaboração desta tese, GLCM (Gray Level Co-occurrence Matrix), LBP (Local Binary Pattern) e LPQ Local Phase Quantization. Além disso, empregamos um esquema de classificação baseado na representação da dissimilaridade, o qual tem contribuído para o sucesso em problemas de verificação de escritores. Inicialmente tratamos de algumas questões, como o desempenho dos descritores e parâmetros do sistema escritor-independente. Observamos outras questões importantes relacionadas com a representação dissimilaridade, tais como o impacto do numero de referencias utilizadas para verificação e identificação de escritores, e o número de escritores empregados no conjunto de treinamento. A partir destes primeiros experimentos, foi possível verificar que o número de escritores no conjunto de treinamento impactava menos que se supunha no desempenho do sistema. Para verificar todos estes objetivos, realizamos experimentos com duas diferentes bases de dados: BFL (Brazilian Forensic Letter Database) e IAM (Institut fur Informatik und angewandte Mathematik), as quais são manuscritas em diferentes línguas e contendo números de escritores díspares. Em sequencia, comparamos a abordagem baseada na dissimilaridade com outras estratégias escritor-dependente. Em uma segunda etapa de experimentos avaliamos o impacto de diferentes estilos de escrita, assim como: texto-dependente, texto-independente, caixa alta e falsificação (escrita dissimulada). Para isso, utilizamos a base Firemaker a qual e a única base pública a possuir estes quatro diferentes estilos. Por fim avaliamos a abordagem de seleção de escritores a qual tem por finalidade selecionar escritores para geração de modelos robustos. Através de uma serie de experimentos, percebemos que ambos os descritores de textura LBP e LPQ são capazes de superar os resultados anteriores descritos na literatura para o problema de verificação por cerca de 5 pontos percentuais. Para o problema de identificação de escritores, o uso do descritor LPQ foi capaz de alcançar melhores taxas de acertos globais, 96,7 % e 99,2 % para as bases BFL e IAM, respectivamente. Com relação aos diferentes estilos de escrita, notamos que a abordagem apresenta-se robusta para diferentes estilos incluindo a falsificação, apresentando desempenho superior aos descritos em literatura. Por fim, utilizando a abordagem de seleção de escritores, foi possível alcançar desempenho igual ou superior utilizando cerca de 50% dos escritores disponíveis no conjunto de treinamento.-
Formato: dc.formatapplication/pdf-
Formato: dc.formatapplication/pdf-
Título: dc.titleIdentificação e verificação de escritores usando características texturais e dissimilaridade-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Rede Paraná Acervo

Não existem arquivos associados a este item.