Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Costa, Deise Maria Bertholdi, 1969- | - |
Autor(es): dc.contributor | Leite, Eduardo Alvim | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em Engenharia | - |
Autor(es): dc.creator | Ribeiro, Alana Renata | - |
Data de aceite: dc.date.accessioned | 2025-09-01T10:41:43Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T10:41:43Z | - |
Data de envio: dc.date.issued | 2024-05-16 | - |
Data de envio: dc.date.issued | 2024-05-16 | - |
Data de envio: dc.date.issued | 2014 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/35946 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/35946 | - |
Descrição: dc.description | Orientadora: Profª. Drª. Deise Maria Bertholdi Costa | - |
Descrição: dc.description | Coorientador: Dr. Eduardo Alvim Leite | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 07/02/2014 | - |
Descrição: dc.description | Inclui referências | - |
Descrição: dc.description | Resumo: Este trabalho tem como objetivo principal detectar possíveis anomalias em séries de dados de vazão. A análise da qualidade de dados hidrológicos é extremamente importante, pois todos os dados observados (monitorados) necessitam de tratamentos e processamentos básicos para que possam ser utilizados com confiabilidade. Por meio de técnicas utilizadas para a resolução de problemas de previsão e classificação, baseadas em redes neurais Self-Organizing Maps (SOM), Radial Basis Functions (RBF), e métodos de interpolações (smooth spline) de dados, busca-se apontar possíveis anomalias nas séries oriundas dos postos hidrológicos das sub-bacias de Porto Amazonas e União da Vitória do estado do Paraná, fornecidos pelo Sistema Meteorológico do Paraná (SIMEPAR). Os três métodos propostos retornaram resultados satisfatórios, cumprindo o objetivo da pesquisa, entretanto, o projeto utilizado para a aplicação da rede neural RBF demonstrou capacidade superior de detecção de anomalias nas séries de vazão, em especial para a sub-bacia de Porto Amazonas que é considerada uma sub-bacia de resposta rápida a ocorrência de precipitação. | - |
Descrição: dc.description | Abstract: This work aims to detect possible anomalies in data flow series. Quality analysis of hydrological data is extremely important, because all the observed (monitored) data require basic treatments and processing so they can be used reliably. Through techniques used for solving prediction and classification problems, based on neural networks Self-Organizing Maps (SOM), Radial Basis Functions (RBF), and methods of interpolation (smooth spline) data, it was seeked to identify possible anomalies in the series from the hydrological stations of the sub-basins of Porto Amazonas and União da Vitória in Paraná state, provided by the Sistema Meteorológico do Paraná (SIMEPAR). The three proposed methods returned satisfactory results, fulfilling the purpose of the research, however, the project used for the application of RBF neural network demonstrated superior ability to detect anomalies in flow series, especially for the sub-basin of Porto Amazonas which is considered a rapid response sub-basin to precipitation events. | - |
Formato: dc.format | 95f. : il. algumas color., grafs., tabs. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Análise numérica | - |
Palavras-chave: dc.subject | Vazante | - |
Palavras-chave: dc.subject | Hidrologia | - |
Palavras-chave: dc.subject | Interpolação | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Título: dc.title | Métodos numéricos aplicados à detecção de anomalias em dados de vazão | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: