Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Alves, Marcelo Muniz Silva | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemática | - |
Autor(es): dc.creator | Souza, Diego das Neves de | - |
Data de aceite: dc.date.accessioned | 2019-08-22T00:43:06Z | - |
Data de disponibilização: dc.date.available | 2019-08-22T00:43:06Z | - |
Data de envio: dc.date.issued | 2018-04-09 | - |
Data de envio: dc.date.issued | 2018-04-09 | - |
Data de envio: dc.date.issued | 2014 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/35891 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/35891 | - |
Descrição: dc.description | Orientador : Prof. Dr. Marcelo Muniz Silva Alves | - |
Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática Aplicada. Defesa: Curitiba, 19/02/2014 | - |
Descrição: dc.description | Inclui referências | - |
Descrição: dc.description | Resumo: Sendo G um grupo, iremos abordar os grupos de cohomologia de G com coeficientes em um G-módulo e explicitaremos estes no caso em que G for um grupo cíclico finito. Sendo K um anel comutativo estudaremos também os K - módulos de cohomologia de uma K -álgebra A com coeficientes em um (A — A)- bimódulo e explicitaremos estes nos dois primeiros graus. Se f for um polinômio mônico em K [x] calcularemos as cohomologias de Hochschild de K [x]/(f). No caso em que K é um corpo e tomamos o polinômio mônico em K [x] como sendo xn temos uma acao de G em K[x]/(xn) dada através de um caractere de G no grupo multiplicativo de K e com isso formamos o produto smash B = K [x]/(xn)#K G , onde KG é a algebra do grupo G. Trabalhando com a algebra B, explicitaremos as cohomologias de Hochschild desta em cada grau, e depois veremos que ha um isomorfismo entre as cohomologias de Hochschild de B de graus 2i e 2i + 1. Através do produto cup, calcularemos a estrutura de anel de cohomologia de Hochschild de B sob a hipótese de que a ordem do caractere antes citado seja divisor de n. | - |
Descrição: dc.description | Abstract: Let G be a group, we are going to discuss the cohomology groups of G with coefficients in a G-module and we will describe explicitly these in case where G is a finite cyclic group. Let K be a commutative ring, we also are going to study the cohomology K-modules of a K-algebra A with coefficients in a (A - A)- bimodule and we will describe these in the first two degrees. If f is a monic polynomial in K [x] we are going to calculate the Hochschild cohomology of K [x ]/(f). In the case where K is a field and we take the monic polynomial in K [x] as xn we have an action of G in K [x]/(xn) given by a character of G in the multiplicative group of K and thus we can form the smash product B = K [x]/ (xn)#KG, where KG is the group algebra of G over K . Working with the algebra B , we are going to determine its Hochschild cohomology in each degree, and then we will see that there is an isomorphism between the Hochschild cohomology of B in degrees 2i and 2i + 1. Through the cup product, we are going to calculate the structure of the Hochschild cohomology of the ring B under the hypothesis that the order of the character previously cited divides n. | - |
Formato: dc.format | 116f. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Dissertações | - |
Palavras-chave: dc.subject | Matemática aplicada | - |
Palavras-chave: dc.subject | Teses | - |
Palavras-chave: dc.subject | Hopf, Algebra de | - |
Palavras-chave: dc.subject | Teoria de homologia | - |
Palavras-chave: dc.subject | Topologia algebrica | - |
Título: dc.title | O anel de cohomologia de uma família de álgebras de hopf de posto um | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: