Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Hermes, Christian Johann Losso | - |
Autor(es): dc.contributor | Cardoso, Rodrigo Perito | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Engenharia Mecânica | - |
Autor(es): dc.creator | Oliveira, Klaudio Santos Marcondes de | - |
Data de aceite: dc.date.accessioned | 2019-08-22T00:38:09Z | - |
Data de disponibilização: dc.date.available | 2019-08-22T00:38:09Z | - |
Data de envio: dc.date.issued | 2014-07-23 | - |
Data de envio: dc.date.issued | 2014-07-23 | - |
Data de envio: dc.date.issued | 2014 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/35474 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/35474 | - |
Descrição: dc.description | Resumo: A refrigeração termoelétrica vem se destacando como tecnologia alternativa na produção de frio, em virtude de seu baixo custo, confiabilidade, baixo nível de ruído e versatilidade de aplicação. Sistemas termoelétricos convertem energia elétrica em gradiente de temperatura e vice-versa, permitindo que essa tecnologia seja utilizada também na geração de energia elétrica. Uma célula termelétrica típica é fabricada com duas placas finas de cerâmica e uma sequência de blocos de materiais semicondutores dopados do tipo p e n. Os blocos de semicondutores do tipo p e n estão conectados eletricamente em série e termicamente em paralelo, formando assim um par termoelétrico. O presente trabalho tem como objetivo apresentar, com base nos princípios fundamentais da Termodinâmica Irreversível, um modelo bidimensional para o par termoelétrico. A equação de conservação de energia foi formulada a fim de considerar os efeitos dos fenômenos de Fourier (condução de calor), Joule (conversão irreversível de energia elétrica em calor) e Thomson (efeito termoelétrico) sobre a distribuição de temperatura. O campo elétrico também foi solucionado, obtendo-se a distribuição de tensão e fluxo corrente elétrica . As equações foram discretizadas através do método dos volumes finitos e o algoritmo TDMA foi utilizado para solucionar o sistemas de equações. Um método iterativo foi utilizado para tratar a influência da temperatura sobre o coeficiente de Seebeck e sobre as demais propriedades termofísicas do material . Os resultados do modelo foram comparados com dados experimentais, obtendo-se uma concordância satisfatória tanto para a capacidade de refrigeração, corrente elétrica e COP, com erros dentro de uma faixa de +/- 10%. Após exercício de validação, o modelo foi utilizado para avaliar os efeitos das propriedades termoelétricas (i.e., o coeficiente Seebeck, condutividade térmica e resistividade elétrica) e da geometria (i.e., razão de aspecto) sobre o desempenho da célula termoelétrica. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Dissertações | - |
Título: dc.title | Avaliação numérica do desempenho termodinâmico de células termoelétricas | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: