Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Oliveira, Luiz Eduardo Soares de, 1971- | - |
Autor(es): dc.contributor | Koerich, Alessandro Lameiras | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática | - |
Autor(es): dc.creator | Costa, Yandre Maldonado e Gomes da | - |
Data de aceite: dc.date.accessioned | 2019-08-22T00:22:52Z | - |
Data de disponibilização: dc.date.available | 2019-08-22T00:22:52Z | - |
Data de envio: dc.date.issued | 2014-03-19 | - |
Data de envio: dc.date.issued | 2014-03-19 | - |
Data de envio: dc.date.issued | 2013 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/34886 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/34886 | - |
Descrição: dc.description | Resumo: Com a rápida expansão da Internet um imenso volume de dados tem se tornado disponível on-line. Entretanto, essa informação não segue um padrão de apresentação e não está disponível de maneira estruturada. Devido a isso, tarefas como busca, recuperação, indexação e sumarização automática dessas informações se tornaram problemas importantes, cujas soluções coadunam no sentido de facilitar o acesso a estes conteúdos. Há algum tempo, a maior parte das informações sobre dados multimídia é organizada e classificada com base em informações textuais. A música digital é um dos mais importantes tipos de dados distribuídos na Internet. Existem muitos estudos a respeito da análise de conteúdo de áudio usando diferentes características e métodos. Um componente fundamental para um sistema de recuperação de informações de áudio baseado em conteúdo é um modulo de classificação automática de gêneros musicais. Os gêneros musicais são rótulos categóricos criados por especialistas humanos e por amadores para determinar ou designar estilos de música. Em alguns trabalhos verificou-se que o gênero musical é um importante atributo para os usuários na organização e recuperação de arquivos de música. Este trabalho propõe o uso de características inovadoras para a representação do conteúdo das músicas, obtidas a partir de imagens de espectrograma geradas a partir do sinal do áudio, para aplicação em tarefas de reconhecimento de gêneros musicais. As imagens de espectrograma apresentam a textura como principal atributo visual. Assim, as características propostas foram obtidas utilizando-se alguns descritores de textura propostos na literatura de processamento de imagens, em particular os descritores Local Binary Pattern e Local Phase Quantization, pois ambos se destacaram por apresentar um bom desempenho. Também foram investigados os impactos proporcionados pelo uso de uma estratégia de preservação de informações locais, através do zoneamento das imagens. O zoneamento propiciou a criação de múltiplos classificadores, um para cada zona, e os melhores resultados foram obtidos com a fusão das saídas destes classificadores. A maioria dos experimentos foi realizada sobre a base LMD com o uso de \artist lter". O método também foi experimentado sobre a base ISMIR 2004. Os melhores resultados obtidos são comparáveis aos melhores resultados já apresentados na literatura utilizando outras abordagens. Considerando os experimentos com a base LMD e com o uso de \artist _lter", os resultados obtidos são superiores ao melhor resultado descrito na literatura até então. Finalmente, seleção dinâmica de classificadores e seleção de características foram avaliadas e mostraram resultados promissores. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Musica - Analise, apreciação | - |
Palavras-chave: dc.subject | Sistemas de reconhecimento de padrões | - |
Título: dc.title | Reconhecimento de gêneros musicais utilizando espectrogramas com combinação de classificadores | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: