Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ramirez Pozo, Aurora Trinidad, 1959- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciencias Exatas. Programa de Pós-Graduaçao em Informática | - |
Autor(es): dc.creator | Carvalho, André Britto de | - |
Data de aceite: dc.date.accessioned | 2019-08-22T00:03:00Z | - |
Data de disponibilização: dc.date.available | 2019-08-22T00:03:00Z | - |
Data de envio: dc.date.issued | 2013-05-20 | - |
Data de envio: dc.date.issued | 2013-05-20 | - |
Data de envio: dc.date.issued | 2013-05-20 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/30068 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/30068 | - |
Descrição: dc.description | Resumo: Problemas de otimização multiobjetivo possuem mais de uma função objetivo que estão em conflito. Devido a essa característica, nao existe somente uma melhor soluçao, mas sim um conjunto com as melhores soluções do problema, definidas pelos conceitos da teoria da Otimalidade de Pareto. Algoritmos Evolucionarios Multiobjetivo sao aplicados com sucesso em diversos Problemas de Otimizacão Multiobjetivo. Dentre esses algoritmos, os baseados na Otimizaçao por Nuvem de Partículas Multiobjetivo (MOPSO) apresentam bons resultados para problemas multiobjetivo e se destacam por possuirem características específicas, como a cooperaçao entre as partículas da populacao. Porem, quando o numero de funcoes objetivo cresce, os algoritmos evolucionários multiobjetivo baseados em dominancia de Pareto encontram algumas dificuldades em definir quais sao as melhores solucoes e nao efetuam uma busca que converge para as soluçães ótimas do problema. A Otimizaçao com muitos objetivos e uma area nova que visa propor novos metodos para reduzir a deterioracao da busca desses algoritmos em problemas de otimizacão com muitos objetivos (problemas com mais de três funcoes objetivo). Assim, motivado por esse campo de pesquisa ainda em aberto e pelo fato da meta-heurística MOPSO ser pouco utilizada na Otimizaçao com Muitos Objetivos, este trabalho de doutorado contribuí com a proposta de novas metodos e algoritmos que buscam explorar três diferentes aspectos da Otimizacao por Nuvem de Partículas Multiobjetivo: uso de novas relacoes de preferencias, metodos de arquivamento e algoritmos MOPSO com multiplos enxames. Neste estudo, íe feita uma aníalise empírica que utiliza um conjunto de indicadores de qualidade e problemas de benchmark com o intuito de analisar aspectos como convergencia e diversidade da busca dos algoritmos utilizados. Por fim, esta tese traca os principais caminhos que serãao seguidos nos trabalhos futuros. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Teses | - |
Palavras-chave: dc.subject | Algoritmos | - |
Palavras-chave: dc.subject | Algoritmos geneticos | - |
Palavras-chave: dc.subject | Otimização combinatoria | - |
Título: dc.title | Novas estratégias para otimização por nuvem de partículas aplicadas a problemas com muitos objetivos | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: