Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Marchi, Carlos Henrique, 1966- | - |
Autor(es): dc.contributor | Araki, Luciano Kiyoshi, 1980- | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Engenharia Mecânica | - |
Autor(es): dc.creator | Alves, Arileide Cristina | - |
Data de aceite: dc.date.accessioned | 2025-09-01T11:25:41Z | - |
Data de disponibilização: dc.date.available | 2025-09-01T11:25:41Z | - |
Data de envio: dc.date.issued | 2024-07-25 | - |
Data de envio: dc.date.issued | 2024-07-25 | - |
Data de envio: dc.date.issued | 2010 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/28261 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/28261 | - |
Descrição: dc.description | Orientador: Prof. Dr. Carlos Henrique Marchi | - |
Descrição: dc.description | Coorientador: Prof. Dr. Luciano Kiyoshi Araki | - |
Descrição: dc.description | Tese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica. Defesa: Curitiba, 21/06/2010 | - |
Descrição: dc.description | Bibliografia: fls. 122-132 | - |
Descrição: dc.description | Área de concentração: Fenômenos de transporte e mecânica dos solos | - |
Descrição: dc.description | Resumo: O objetivo principal deste trabalho é verificar soluções numéricas para o problema da condução de calor bidimensional, cuja equação governante é a Equação de Laplace. O erro numérico, ou de discretização, é causado apenas por erros de truncamento; não são considerados os erros de arredondamento, de iteração e de programação. As soluções numéricas são obtidas com o Método dos Volumes Finitos (MVF) e o erro de discretização é reduzido com o Método das Múltiplas Extrapolações de Richardson (MER). O problema é linear, com condições de contorno de Dirichlet. A aplicação das condições de contorno é feita por meio de volumes fictícios, em um domínio de cálculo quadrangular de lado unitário, discretizado com malhas triangulares e quadrangulares, refinadas sistematicamente em um sistema de coordenadas cartesianas. As funções de interpolação usadas do tipo CDS-2, UDS-1 para os fluxos e integração numérica via regra do retângulo. A razão de refino entre malhas foi considerada constante e igual a 2. Para acelerar a convergência na obtenção das soluções numéricas é aplicado o Algebraic Multigrid (AMG) em malhas triangulares e o Geometric Multigrid (GMG) em malhas quadrangulares. Verificou-se que para todas as variáveis de interesse, a ordem assintótica estimada a priori foi confirmada pelo experimento numérico; MER é eficiente na redução do erro de discretização em malhas triangulares e que o desempenho do modelo numérico proposto foi melhor em malhas quadrangulares. O cálculo do erro numérico foi possível devido ao fato das soluções analíticas de todas as variáveis serem conhecidas. | - |
Descrição: dc.description | Abstract: The main purpose of this work is to verify numerical solutions for the constant properties two-dimensional steady state heat transfer problem, without heat generation which governing differential equation is the Laplace one. The numerical error, or discretization error, is just caused by truncation errors; the round-off, iteration and programming errors are not considered. The numerical solutions are obtained with the Finite Volume Method (FVM) and the discretization error is reduced with the Multiple Richardson's Extrapolations (MRE). The problem is linear, with Dirichlet boundary conditions. All the boundary conditions defined in the mathematical model are approached by ghost volumes, in a two-dimensional calculation domain, a square of unitary side, discretizated with triangular and quadrangular grids, systematically refined in the Cartesian coordinates system. The interpolation functions used were the CDS-2 and UDS-1 for the fluxes, while for the numerical integration was used the rectangle rule. The grid refinement ratio was considered constant and equals to 2. To accelerate the convergence during the obtainment of the numerical solutions, the Algebraic Multigrid is applied (AMG) in triangular grids and Geometric Multigrid (GMG) in quadrangular grids. It was verified, for all variables of interest, that the a priori asymptotic order was confirmed by numeric experiments; MER is efficient in the reduction of the discretization errors in triangular grids and the performance of the proposed numeric model was better in quadrangular grids. The estimative of the numerical error was possible because the exact analytical solutions of all the variables were known. | - |
Formato: dc.format | 175f. : il., grafs., tabs. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Relação: dc.relation | Disponível em formato digital | - |
Palavras-chave: dc.subject | Dinamica dos fluidos | - |
Palavras-chave: dc.subject | Método dos volumes finitos | - |
Palavras-chave: dc.subject | Calor - Transmissão | - |
Palavras-chave: dc.subject | Engenharia mecânica | - |
Título: dc.title | Verificação de soluções numéricas da Equação de Laplace 2D com malhas triangulares e múltiplas extrapolações de Richardson | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: