
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Geus, Klaus de | - |
| Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informática | - |
| Autor(es): dc.creator | Milsztajn, Flavio | - |
| Data de aceite: dc.date.accessioned | 2025-09-01T11:16:46Z | - |
| Data de disponibilização: dc.date.available | 2025-09-01T11:16:46Z | - |
| Data de envio: dc.date.issued | 2024-10-20 | - |
| Data de envio: dc.date.issued | 2024-10-20 | - |
| Data de envio: dc.date.issued | 2003 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/25097 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/25097 | - |
| Descrição: dc.description | Orientador: Klaus de Geus | - |
| Descrição: dc.description | Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 2003 | - |
| Descrição: dc.description | Inclui bibliografia | - |
| Descrição: dc.description | Resumo: A ressonância magnética é uma modalidade de imagens que tem muitas aplicações em medicina e em especial em estudos do cérebro. Um dos seus pontos fortes é o alto contraste que produz em tecidos moles, o qual possibilita a utilização de imagens em diagnósticos de anomalias e planejamento de procedimentos cirúrgicos. Este trabalho investiga métodos de segmentação de tecidos cerebrais que usam campos aleatórios de Markov e algoritmos genéticos. O algoritmo genético tem o objetivo de melhorar o processo de segmentação por meio da determinação de parâmetros iniciais. Os resultados obtidos neste processo são comparados com imagens segmentadas manualmente por especialistas. Além disso, o resultado da segmentação permite a classificação de estruturas e a determinação de novos parâmetros, os quais auxiliam no processo de criação de imagens tridimensionais do cérebro. | - |
| Descrição: dc.description | Abstract: Magnetic resonance is an imaging modality with many applications in medicine, particularly in brain studies. One advantage of its use is the high contrast that it generates in soft tissues, allowing for its use in the diagnosis of anomalies and in the planning of surgical procedures. The present work investigates methods of brain tissue segmentation that use Markov random fields and genetic algorithms. A genetic algorithm is employed to estimate initial parameters, aiming at improving the segmentation process. The results thus obtained are compared with images that were manually segmented by specialists. In addition, the results of the segmentation process also make it possible to classify structures and determine new parameters, which are useful in the creation of three dimension images of the brain. | - |
| Formato: dc.format | 92f. : il. | - |
| Formato: dc.format | application/pdf | - |
| Formato: dc.format | application/pdf | - |
| Relação: dc.relation | Disponível em formato digital | - |
| Palavras-chave: dc.subject | Imagem de ressonancia magnetica | - |
| Palavras-chave: dc.subject | Algorítmos genéticos | - |
| Palavras-chave: dc.subject | Processamento de imagens - Técnicas digitais | - |
| Palavras-chave: dc.subject | Informatica medica | - |
| Palavras-chave: dc.subject | Ciência da Computação | - |
| Título: dc.title | Segmentação de tecidos cerebrais em imagens de ressonância magnética utilizando campos aleatórios de Markov | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: