Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Luz, Marcos Gomes Eleutério da, 1968- | - |
Autor(es): dc.contributor | Koehler, Marlus | - |
Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciencias Exatas. Programa de Pós-Graduaçao em Física | - |
Autor(es): dc.creator | Kramer, Klaus | - |
Data de aceite: dc.date.accessioned | 2019-08-21T23:51:59Z | - |
Data de disponibilização: dc.date.available | 2019-08-21T23:51:59Z | - |
Data de envio: dc.date.issued | 2010-05-31 | - |
Data de envio: dc.date.issued | 2010-05-31 | - |
Data de envio: dc.date.issued | 2010-05-31 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/1884/23801 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/23801 | - |
Descrição: dc.description | Resumo: Desde que os autômatos celulares (AC) foram criados, vêm sendo muito utilizados em diversas áreas de conhecimento, pois são sistemas simples e de fácil implementação computacional. Em geral, AC são compostos por redes de células, onde cada célula assume um valor numérico que determina seu estado. O tempo é discreto e o valor do estado de cada célula num tempo posterior depende do valor dos estados de seus vizinhos no tempo anterior. A exata conexão entre estas quantidades é estabelecida por uma regra dinâmica específica (a regra de atualização). Existem milhares de regras distintas para AC. Em nosso trabalho utilizaremos uma regra simples, onde o estado da célula no tempo t + 1 depende da soma dos estados de seus vizinhos no tempo t. Consideramos 3 estados, sendo 2 ativos (+1, -1), que competem dinamicamente, um passivo (zero), que não influencia a regra de mudança. Definimos também um “estado interno”, a inércia, que é um ingrediente novo no AC. Essa inércia (que pode variar de 0 ao número máximo de vizinhos) confere a cada célula uma resistência à mudança de seu estado. Discutimos então, no caso de um AC bidimensional, como a inércia modifica os padrões de evolução e as propriedades dinâmicas do sistema. Estudamos diferentes aspectos do problema, populações das configurações finais, tempos de convergência, dinâmica de invasão, geração de padrões espaciais, dinâmica da competição entre os estado ativos e assim por diante. De forma geral encontramos que a inércia pode alterar de forma bastante significativa a dinâmica e o comportamento médio típico de um mesmo AC. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Palavras-chave: dc.subject | Teses | - |
Título: dc.title | Autômatos celulares com inércia | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: