
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Chaves Neto, Anselmo, 1945- | - |
| Autor(es): dc.contributor | Universidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Métodos Numéricos em Engenharia | - |
| Autor(es): dc.creator | Lira, Sachiko Araki | - |
| Data de aceite: dc.date.accessioned | 2025-09-01T11:47:28Z | - |
| Data de disponibilização: dc.date.available | 2025-09-01T11:47:28Z | - |
| Data de envio: dc.date.issued | 2025-05-12 | - |
| Data de envio: dc.date.issued | 2025-05-12 | - |
| Data de envio: dc.date.issued | 2008 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/1884/14370 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/1884/14370 | - |
| Descrição: dc.description | Orientador: Prof. Dr. Anselmo Chaves Neto | - |
| Descrição: dc.description | Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas e Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 2008 | - |
| Descrição: dc.description | Inclui bibliografia | - |
| Descrição: dc.description | Área de concentração: Programação matemática | - |
| Descrição: dc.description | Resumo: O presente estudo tem como objetivo avaliar os efeitos do erro amostral nas estimativas dos parâmetros do modelo fatorial ortogonal por componentes principais. A precisão das estimativas foi avaliada pelo coeficiente de variação. As populações normais multivariadas foram geradas pelo Método de Simulação Monte Carlo. Para cada tamanho de amostra dimensionado, para estimar o vetor de médias populacional, adotando-se nível de confiança de 95% e margens de erros relativos fixados em 5%, 10% e 15%, foram retiradas 1.000 amostras aleatórias, com reposição. Outra medida avaliada foi a raiz quadrada do erro quadrático médio relativa (erro total relativo) das estimativas. O estudo considerou todos os fatores (autovalores maiores do que 1, definido pelo Critério de Kaiser). Optou-se por utilizar o maior coeficiente de variação e a maior raiz quadrada do erro quadrático médio relativa das estimativas, pois, para cada modelo fatorial estimado, têm-se diferentes números de componentes (fatores e variáveis). Desta forma, está-se avaliando a menor precisão e o maior erro total relativos das estimativas. Ajustaram-se os modelos de regressão linear múltipla para analisar a relação existente entre coeficiente de variação e raiz quadrada do erro quadrático médio relativa, com as variáveis explicativas: estimativas dos autovalores, autovetores, cargas fatoriais e comunalidades, tamanhos de amostra, números de variáveis e de fatores e estimativa da explicação dos fatores. Todas as variáveis explicativas são determinantes na precisão das estimativas. Em situações cujas estimativas são pequenas, tanto o coeficiente de variação quanto a raiz quadrada do erro quadrático médio relativa são grandes. Constatou-se a existência de viés nas estimativas, sendo consideravelmente maior nos autovetores e cargas fatoriais, principalmente quando o número de variáveis é grande. A medida indicada para avaliar a qualidade das estimativas do modelo fatorial ortogonal é erro total relativo, ou a raiz quadrada do erro quadrático médio relativa. | - |
| Descrição: dc.description | Abstract: The present study aims at assessing sampling error effects on the estimates of Orthogonal Factor Model parameters based on the Principal Components Method. Estimate precision was assessed through the coefficient of variation. We also produced multivariate normal populations through the Monte Carlo Simulation Method. In order to estimate the mean population vector, it was used a 95% confidence level and 5%, 10% and 15% margin of relative error for each sample dimensioned size. The study selected 1.000 samples with replacement randomly. This work also assessed the relative root mean square error (relative total error) of the estimates and took into consideration every factor (eigenvalue higher than 1), as defined by the Kaiser Criterion. We chose to use the highest coefficient of variation and the relative root mean square error (relative total error) of the estimates, since each factor model estimated has a different number of components (factor and variables), thus we assessed the estimate least precision. Multiple Linear Regression models were adjusted so that the study could analyze the relation between the coefficient of variation and the relative root mean square error (relative total error), with the following explanatory variables: eigenvalue estimates, eigenvectors, factor loads and communalities, sample sizes, variable and factor number, and factor explanation estimates. All the explanatory variables are essential for the precision of the estimates. In situations where estimates are low, both the coefficient of variation and the relative root mean square error (relative total error) are relatively high. In theestimates there was evidence of bias, which was considerably higher in the eigenvectors and factor loads, mainly when number of variables is large. Relative total error, or relative root mean square error (relative total error), is the best measurement to asses the estimates of Orthogonal Factor Model parameters. | - |
| Formato: dc.format | 193f. : il. | - |
| Formato: dc.format | application/pdf | - |
| Formato: dc.format | application/pdf | - |
| Relação: dc.relation | Disponível em formato digital | - |
| Palavras-chave: dc.subject | Analise fatorial | - |
| Palavras-chave: dc.subject | Monte Carlo, Método de | - |
| Palavras-chave: dc.subject | Jogos de probabilidades (Matemática) | - |
| Palavras-chave: dc.subject | Amostragem (Estatística) | - |
| Palavras-chave: dc.subject | Probabilidades | - |
| Palavras-chave: dc.subject | Análise numérica | - |
| Título: dc.title | Efeitos do erro amostral nas estimativas dos parâmetros do modelo fatorial ortogonal | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - Rede Paraná Acervo | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: