Identification of lubricant contamination by biodiesel using vibration analysis and neural network

Registro completo de metadados
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorGoncalves, Aparecido Carlos-
Autor(es): dc.creatorPadovese, Linilson Rodrigues-
Data de aceite:
Data de disponibilização:
Data de envio:
Data de envio:
Data de envio:
Fonte completa do material: dc.identifier
Fonte completa do material: dc.identifier
Fonte: dc.identifier.uri
Descrição: dc.descriptionPurpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.-
Formato: dc.format104-110-
Idioma: dc.languageen-
Publicador: dc.publisherEmerald Group Publishing Limited-
Relação: dc.relationIndustrial Lubrication and Tribology-
Relação: dc.relation0.763-
Relação: dc.relation0,334-
Direitos: dc.rightsclosedAccess-
Palavras-chave: dc.subjectLubricants-
Palavras-chave: dc.subjectCondition monitoring-
Palavras-chave: dc.subjectContamination-
Palavras-chave: dc.subjectVibration-
Palavras-chave: dc.subjectBearings-
Palavras-chave: dc.subjectCrankcase oils-
Palavras-chave: dc.subjectNeural networks-
Palavras-chave: dc.subjectInternal combustion engines-
Palavras-chave: dc.subjectProbabilistic neural network-
Título: dc.titleIdentification of lubricant contamination by biodiesel using vibration analysis and neural network-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.