Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Lusquino Filho, Leopoldo André Dutra | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Carvalho, Camilla Rodrigues | - |
Data de aceite: dc.date.accessioned | 2025-08-21T23:23:19Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T23:23:19Z | - |
Data de envio: dc.date.issued | 2025-07-16 | - |
Data de envio: dc.date.issued | 2025-06-17 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/312147 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/312147 | - |
Descrição: dc.description | Por meio de técnicas avançadas de Machine Learning (ML), busca-se maximizar o aproveitamento dos recursos energéticos disponíveis em cada localidade, garantindo o fornecimento de energia de forma sustentável e eficiente. Essa abordagem permite prever padrões de consumo, otimizar a geração de energia a partir de fontes renováveis e não renováveis, e reduzir desperdícios, alinhando-se às metas globais de descarbonização e à promoção de um futuro energético mais resiliente e sustentável. Tendo isso em vista, o presente trabalho propõe um estudo abrangente que investiga a eficácia do uso de redes neurais, em particular a arquitetura LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit) e LSTM-Bidirecional, GRU-Bidirecional para a predição de consumo residencial. Foram realizados experimentos em cenários distintos, utilizando-se de duas submedições, e entradas variadas a fim de avaliar a robustez e performance dos métodos, comparando-os com métricas já consolidadas, encontrando assim melhores resultados para LSTM e BiGRU. | - |
Descrição: dc.description | Through advanced Machine Learning (ML) techniques, the goal is to maximize the utilization of available energy resources in each location, ensuring a sustainable and efficient energy supply. This approach enables the prediction of consumption patterns, the optimization of energy generation from both renewable and non-renewable sources, and the reduction of waste, aligning with global decarbonization goals and promoting a more resilient and sustainable energy future. The present work proposes a comprehensive study that investigates the effectiveness of using neural networks particularly the LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit), Bidirectional LSTM, and Bidirectional GRU architectures for residential consumption forecasting. Experiments were conducted in different scenarios using two submetering configurations and varied input features to assess the robustness and performance of the methods. The results were compared to using established metrics, with LSTM and BiGRU showing the best performance. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | Aprendizado do computador | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Palavras-chave: dc.subject | Análise energética | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Neural networks (Computer science) | - |
Palavras-chave: dc.subject | Energy analysis | - |
Título: dc.title | Previsão de consumo energético com redes neurais | - |
Título: dc.title | Energy consumption forecasting with neural networks | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: