Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Almeida, Thiago César Castilho | - |
Autor(es): dc.creator | Valem, Lucas Pascotti | - |
Autor(es): dc.creator | Pedronette, Daniel Carlos Guimarães | - |
Data de aceite: dc.date.accessioned | 2025-08-21T16:37:45Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T16:37:45Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/978-3-031-77389-1_4 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/309983 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/309983 | - |
Descrição: dc.description | In recent years, the amount of image data has increased exponentially, driven by advancements in digital technologies. As the volume of data expands, the efforts required for labeling also escalate, which is costly and time-consuming. This scenario highlights the critical need for methods capable of delivering effective results in scenarios with few or no labels at all. In unsupervised retrieval, the task of Query Performance Prediction (QPP) is crucial and challenging, as it involves estimating the effectiveness of a query without labeled data. Besides promising, the QPP approaches are still largely unexplored for image retrieval. Additionally, recent approaches require training and do not exploit rank correlation to model the data. To address this gap, we propose a novel QPP measure named Accumulated JaccardMax, which considers contextual similarity information and innovates by exploiting a recent rank correlation measure to assess the effectiveness of ranked lists. It provides a robust estimation by analyzing the ranked lists in different neighborhood depths and does not require any training or labeled data. Extensive experiments were conducted across 5 datasets and over 20 different features including hand-crafted (e.g., color, shape, texture) and deep learning (e.g., Convolutional Networks and Vision Transformers) models. The results reveal that the proposed unsupervised measure exhibits a high correlation with the Mean Average Precision (MAP) in most cases, achieving results that are better or comparable to the baseline approaches in the literature. | - |
Descrição: dc.description | Petrobras | - |
Descrição: dc.description | São Paulo State University (UNESP), SP | - |
Descrição: dc.description | São Paulo State University (UNESP), SP | - |
Descrição: dc.description | Petrobras: #2023/00095-3 | - |
Formato: dc.format | 43-55 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Image Retrieval | - |
Palavras-chave: dc.subject | Query Performance Prediction | - |
Título: dc.title | Unsupervised Effectiveness Estimation Measure Based on Rank Correlation for Image Retrieval | - |
Tipo de arquivo: dc.type | aula digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: