Similarity Index Values in Fuzzy Logic and the Support Vector Machine Method Applied to the Identification of Changes in Movement Patterns During Biceps-Curl Weight-Lifting Exercise

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCiência e Tecnologia de São Paulo (IFSP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorFederal University of Alfenas (UNIFAL)-
Autor(es): dc.contributorEscola Superior de Educação (CIEQV—Setúbal)-
Autor(es): dc.contributorSport Physical Activity and Health Research & INnovation CenTer (SPRINT)-
Autor(es): dc.contributorUniversidade de Lisboa-
Autor(es): dc.contributorUniversidade de Évora-
Autor(es): dc.contributorSantarém Polytechnic University-
Autor(es): dc.creatorPeres, André B.-
Autor(es): dc.creatorAlmeida, Tiago A. F.-
Autor(es): dc.creatorMassini, Danilo A.-
Autor(es): dc.creatorMacedo, Anderson G.-
Autor(es): dc.creatorEspada, Mário C.-
Autor(es): dc.creatorRobalo, Ricardo A. M.-
Autor(es): dc.creatorOliveira, Rafael-
Autor(es): dc.creatorBrito, João P.-
Autor(es): dc.creatorPessôa Filho, Dalton M.-
Data de aceite: dc.date.accessioned2025-08-21T18:20:55Z-
Data de disponibilização: dc.date.available2025-08-21T18:20:55Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-03-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/jfmk10010084-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309883-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309883-
Descrição: dc.descriptionBackground/Objectives: Correct supervision during the performance of resistance exercises is imperative to the correct execution of these exercises. This study presents a proposal for the use of Morisita–Horn similarity indices in modelling with machine learning methods to identify changes in positional sequence patterns during the biceps-curl weight-lifting exercise with a barbell. The models used are based on the fuzzy logic (FL) and support vector machine (SVM) methods. Methods: Ten male volunteers (age: 26 ± 4.9 years, height: 177 ± 8.0 cm, body weight: 86 ± 16 kg) performed a standing barbell bicep curl with additional weights. A smartphone was used to record their movements in the sagittal plane, providing information about joint positions and changes in the sequential position of the bar during each lifting attempt. Maximum absolute deviations of movement amplitudes were calculated for each execution. Results: A variance analysis revealed significant deviations (p < 0.002) in vertical displacement between the standard execution and execution with a load of 50% of the subject’s body weight. Experts with over thirty years of experience in resistance-exercise evaluation evaluated the exercises, and their results showed an agreement of over 70% with the results of the ANOVA. The similarity indices, absolute deviations, and expert evaluations were used for modelling in both the FL system and the SVM. The root mean square error and R-squared results for the FL system (R2 = 0.92, r = 0.96) were superior to those of the SVM (R2 = 0.81, r = 0.79). Conclusions: The use of FL in modelling emerges as a promising approach with which to support the assessment of movement patterns. Its applications range from automated detection of errors in exercise execution to enhancing motor performance in athletes.-
Descrição: dc.descriptionNatural Science Foundation of Tianjin Municipal Science and Technology Commission-
Descrição: dc.descriptionInstituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP), SP-
Descrição: dc.descriptionGraduate Programme in Human Development and Technologies São Paulo State University (UNESP), SP-
Descrição: dc.descriptionDepartment of Physical Education School of Sciences (FC) São Paulo State University (UNESP), SP-
Descrição: dc.descriptionPost-Graduation Program in Rehabilitation Sciences Institute of Motricity Sciences Federal University of Alfenas (UNIFAL), MG-
Descrição: dc.descriptionInstituto Politécnico de Setúbal Escola Superior de Educação (CIEQV—Setúbal)-
Descrição: dc.descriptionSport Physical Activity and Health Research & INnovation CenTer (SPRINT)-
Descrição: dc.descriptionCentre for the Study of Human Performance (CIPER) Faculdade de Motricidade Humana Universidade de Lisboa-
Descrição: dc.descriptionComprehensive Health Research Centre (CHRC) Universidade de Évora-
Descrição: dc.descriptionSchool of Sport Santarém Polytechnic University, Av. Dr. Mário Soares-
Descrição: dc.descriptionResearch Centre in Sport Sciences Health Sciences and Human Development (CIDESD) Santarém Polytechnic University-
Descrição: dc.descriptionGraduate Programme in Human Development and Technologies São Paulo State University (UNESP), SP-
Descrição: dc.descriptionDepartment of Physical Education School of Sciences (FC) São Paulo State University (UNESP), SP-
Descrição: dc.descriptionNatural Science Foundation of Tianjin Municipal Science and Technology Commission: UIDB/04748/2020-
Idioma: dc.languageen-
Relação: dc.relationJournal of Functional Morphology and Kinesiology-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectmotor activity-
Palavras-chave: dc.subjectpattern recognition-
Palavras-chave: dc.subjectresistance training-
Palavras-chave: dc.subjecttheoretical models-
Título: dc.titleSimilarity Index Values in Fuzzy Logic and the Support Vector Machine Method Applied to the Identification of Changes in Movement Patterns During Biceps-Curl Weight-Lifting Exercise-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.