Detection of Covid-19 in Chest X-Ray Images Using Percolation Features and Hermite Polynomial Classification

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Porto (FEUP)-
Autor(es): dc.contributorScience and Technology of Triângulo Mineiro (IFTM)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUniversity of Bologna-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal de Uberlândia (UFU)-
Autor(es): dc.creatorF. Roberto, Guilherme-
Autor(es): dc.creatorC. Pereira, Danilo-
Autor(es): dc.creatorS. Martins, Alessandro-
Autor(es): dc.creatorA. A. Tosta, Thaína-
Autor(es): dc.creatorSoares, Carlos-
Autor(es): dc.creatorLumini, Alessandra-
Autor(es): dc.creatorB. Rozendo, Guilherme-
Autor(es): dc.creatorA. Neves, Leandro-
Autor(es): dc.creatorZ. Nascimento, Marcelo-
Data de aceite: dc.date.accessioned2025-08-21T16:21:51Z-
Data de disponibilização: dc.date.available2025-08-21T16:21:51Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/978-3-031-49018-7_12-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309868-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309868-
Descrição: dc.descriptionCovid-19 is a serious disease caused by the Sars-CoV-2 virus that has been first reported in China at late 2019 and has rapidly spread around the world. As the virus affects mostly the lungs, chest X-rays are one of the safest and most accessible ways of diagnosing the infection. In this paper, we propose the use of an approach for detecting Covid-19 in chest X-ray images through the extraction and classification of local and global percolation-based features. The method was applied in two datasets: one containing 2,002 segmented samples split into two classes (Covid-19 and Healthy); and another containing 1,125 non-segmented samples split into three classes (Covid-19, Healthy and Pneumonia). The 48 obtained percolation features were given as input to six different classifiers and then AUC and accuracy values were evaluated. We employed the 10-fold cross-validation method and evaluated the lesion sub-types with binary and multiclass classification using the Hermite Polynomial classifier, which had never been employed in this context. This classifier provided the best overall results when compared to other five machine learning algorithms. These results based in the association of percolation features and Hermite polynomial can contribute to the detection of the lesions by supporting specialists in clinical practices.-
Descrição: dc.descriptionFaculty of Engineering University of Porto (FEUP)-
Descrição: dc.descriptionFederal Institute of Education Science and Technology of Triângulo Mineiro (IFTM)-
Descrição: dc.descriptionScience and Technology Institute Federal University of São Paulo (UNIFESP)-
Descrição: dc.descriptionDepartment of Computer Science and Engineering (DISI) University of Bologna-
Descrição: dc.descriptionDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP)-
Descrição: dc.descriptionFaculty of Computer Science (FACOM) Federal University of Uberlândia (UFU)-
Descrição: dc.descriptionDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP)-
Formato: dc.format163-177-
Idioma: dc.languageen-
Relação: dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectChest X-ray images-
Palavras-chave: dc.subjectComputer vision-
Palavras-chave: dc.subjectCovid-19-
Palavras-chave: dc.subjectHandcrafted features-
Palavras-chave: dc.subjectPercolation-
Título: dc.titleDetection of Covid-19 in Chest X-Ray Images Using Percolation Features and Hermite Polynomial Classification-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.