Video Assessment to Detect Amyotrophic Lateral Sclerosis

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorRoyal Melbourne Institute of Technology-
Autor(es): dc.creatorOliveira, Guilherme Camargo-
Autor(es): dc.creatorNgo, Quoc Cuong-
Autor(es): dc.creatorPassos, Leandro Aparecido-
Autor(es): dc.creatorOliveira, Leonardo Silva-
Autor(es): dc.creatorStylianou, Stella-
Autor(es): dc.creatorPapa, João Paulo-
Autor(es): dc.creatorKumar, Dinesh-
Data de aceite: dc.date.accessioned2025-08-21T21:25:55Z-
Data de disponibilização: dc.date.available2025-08-21T21:25:55Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-08-29-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1159/000540547-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309779-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309779-
Descrição: dc.descriptionIntroduction: Weakened facial movements are early-stage symptoms of amyotrophic lateral sclerosis (ALS). ALS is generally detected based on changes in facial expressions, but large differences between individuals can lead to subjectivity in the diagnosis. We have proposed a computerized analysis of facial expression videos to detect ALS. Methods: This study investigated the action units obtained from facial expression videos to differentiate between ALS patients and healthy individuals, identifying the specific action units and facial expressions that give the best results. We utilized the Toronto NeuroFace Dataset, which includes nine facial expression tasks for healthy individuals and ALS patients. Results: The best classification accuracy was 0.91 obtained for the pretending to smile with tight lips expression. Conclusion: This pilot study shows the potential of using computerized facial expression analysis based on action units to identify facial weakness symptoms in ALS.-
Descrição: dc.descriptionRMIT University-
Descrição: dc.descriptionSchool of Science São Paulo State University-
Descrição: dc.descriptionSchool of Engineering Royal Melbourne Institute of Technology-
Descrição: dc.descriptionSchool of Science Royal Melbourne Institute of Technology-
Descrição: dc.descriptionSchool of Science São Paulo State University-
Formato: dc.format171-180-
Idioma: dc.languageen-
Relação: dc.relationDigital Biomarkers-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAmyotrophic lateral sclerosis-
Palavras-chave: dc.subjectFacial action units-
Palavras-chave: dc.subjectFacial expression-
Palavras-chave: dc.subjectLogistic regression-
Palavras-chave: dc.subjectMachine learning-
Título: dc.titleVideo Assessment to Detect Amyotrophic Lateral Sclerosis-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.