Multi-material direct-ink-writing of silver-based flexible and highly deformable dry electrocardiogram biopatches

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorKing Abdullah University of Science and Technology (KAUST)-
Autor(es): dc.contributorUniversidad Nacional Autónoma de México-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAlsharif, Aljawharah A.-
Autor(es): dc.creatorAviles, Jesus M.-
Autor(es): dc.creatorZechel, Felipe M.-
Autor(es): dc.creatorAlsharif, Nouf A.-
Autor(es): dc.creatorEl-Atab, Nazek-
Data de aceite: dc.date.accessioned2025-08-21T15:09:51Z-
Data de disponibilização: dc.date.available2025-08-21T15:09:51Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-08-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1002/VIW.20240008-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309584-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309584-
Descrição: dc.descriptionOf significant interest are three-dimensional (3D) printed dry electrodes, a departure from traditional wet silver/silver chloride (Ag/AgCl) electrodes. These innovative electrodes not only incorporate 3D printed personalized materials but also eliminate the need for electrolyte gel, which tends to dehydrate over time. Additionally, these electrodes boast unique attributes such as stretchability, deformability, biocompatibility, wearable comfort, and cost-effective manufacturing. While the advantages of dry electrodes are apparent, their performance optimization encounters challenges related to charge migration, particularly when scaled down to miniaturized dimensions, impacting biosignal detection. This study addresses these challenges by focusing on the development of scalable, stretchable, and highly deformable syringe-printed dry electrocardiogram (ECG) patches. The approach employs straightforward multi-material direct-ink-writing (DIW) techniques, realizing complete biopatches per print, resulting in a rapid and cost-effective fabrication process. The achieved printing resolution reaches up to 200 µm, and the conductivity of Ag/AgCl dry electrodes reaches approximately ∼ 5 × 104 S/m. This not only ensures scalability but also expands the applications of metal-based inks to various soft electronic devices, particularly in low-resource settings and environments.-
Descrição: dc.descriptionKing Abdullah University of Science and Technology-
Descrição: dc.descriptionSmart Advanced Memory devices and Applications (SAMA) Lab Electrical and Computer Engineering Computer Electrical Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST)-
Descrição: dc.descriptionCentro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México, Baja California-
Descrição: dc.descriptionDepartment of Electrical engineering State University of São Paulo (UNESP), São Paulo-
Descrição: dc.descriptionDepartment of Electrical engineering State University of São Paulo (UNESP), São Paulo-
Idioma: dc.languageen-
Relação: dc.relationVIEW-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subject3D printing-
Palavras-chave: dc.subjectdirect ink writing-
Palavras-chave: dc.subjectECG-
Palavras-chave: dc.subjectflexible electrodes-
Título: dc.titleMulti-material direct-ink-writing of silver-based flexible and highly deformable dry electrocardiogram biopatches-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.