
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.contributor | Naval Postgraduate School (NPS) | - |
| Autor(es): dc.contributor | Universidade Estadual de Campinas (UNICAMP) | - |
| Autor(es): dc.contributor | Temple University (TU) | - |
| Autor(es): dc.creator | Pereira-Ferrero, V. H. | - |
| Autor(es): dc.creator | Lewis, T. G. | - |
| Autor(es): dc.creator | Valem, L. P. | - |
| Autor(es): dc.creator | Ferrero, L. G.P. | - |
| Autor(es): dc.creator | Pedronette, D. C.G. | - |
| Autor(es): dc.creator | Latecki, L. J. | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T17:47:00Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T17:47:00Z | - |
| Data de envio: dc.date.issued | 2025-04-29 | - |
| Data de envio: dc.date.issued | 2024-08-01 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.1016/j.cosrev.2024.100657 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/309508 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/309508 | - |
| Descrição: dc.description | Despite the advances in machine learning techniques, similarity assessment among multimedia data remains a challenging task of broad interest in computer science. Substantial progress has been achieved in acquiring meaningful data representations, but how to compare them, plays a pivotal role in machine learning and retrieval tasks. Traditional pairwise measures are widely used, yet unsupervised affinity learning approaches have emerged as a valuable solution for enhancing retrieval effectiveness. These methods leverage the dataset manifold to encode contextual information, refining initial similarity/dissimilarity measures through post-processing. In other words, measuring the similarity between data objects within the context of other data objects is often more effective. This survey provides a comprehensive discussion about unsupervised post-processing methods, addressing the historical development and proposing an organization of the area, with a specific emphasis on image retrieval. A systematic review was conducted contributing to a formal understanding of the field. Additionally, an experimental study is presented to evaluate the potential of such methods in improving retrieval results, focusing on recent features extracted from Convolutional Neural Networks (CNNs) and Transformer models, in 8 distinct datasets, and over 329.877 images analyzed. State-of-the-art comparison for Flowers, Corel5k, and ALOI datasets, the Rank Flow Embedding method outperformed all state-of-art approaches, achieving 99.65%, 96.79%, and 97.73%, respectively. | - |
| Descrição: dc.description | Department of Statistics Applied Mathematics and Computing São Paulo State University (UNESP) | - |
| Descrição: dc.description | Center for Homeland Defense and Security Naval Postgraduate School (NPS) | - |
| Descrição: dc.description | School of Applied Sciences University of Campinas (UNICAMP) | - |
| Descrição: dc.description | Computer & Information Sciences Temple University (TU) | - |
| Descrição: dc.description | Department of Statistics Applied Mathematics and Computing São Paulo State University (UNESP) | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | Computer Science Review | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | Affinity learning | - |
| Palavras-chave: dc.subject | Diffusion process | - |
| Palavras-chave: dc.subject | Image retrieval | - |
| Palavras-chave: dc.subject | Manifold learning | - |
| Palavras-chave: dc.subject | Multimedia retrieval | - |
| Palavras-chave: dc.subject | Ranking | - |
| Palavras-chave: dc.subject | Unsupervised | - |
| Título: dc.title | Unsupervised affinity learning based on manifold analysis for image retrieval: A survey | - |
| Tipo de arquivo: dc.type | vídeo | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: