
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.contributor | University of Bologna | - |
| Autor(es): dc.contributor | WZTECH NETWORKS | - |
| Autor(es): dc.contributor | University of Porto | - |
| Autor(es): dc.contributor | Universidade de São Paulo (USP) | - |
| Autor(es): dc.contributor | Universidade Federal de Uberlândia (UFU) | - |
| Autor(es): dc.creator | Miguel, Pedro Lucas | - |
| Autor(es): dc.creator | Lumini, Alessandra | - |
| Autor(es): dc.creator | Medalha, Giuliano Cardozo | - |
| Autor(es): dc.creator | Roberto, Guilherme F. | - |
| Autor(es): dc.creator | Rozendo, Guilherme Botazzo | - |
| Autor(es): dc.creator | Cansian, Adriano Mauro | - |
| Autor(es): dc.creator | Tosta, Thaína A.A. | - |
| Autor(es): dc.creator | do Nascimento, Marcelo Z. | - |
| Autor(es): dc.creator | Neves, Leandro A. | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T17:50:28Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T17:50:28Z | - |
| Data de envio: dc.date.issued | 2025-04-29 | - |
| Data de envio: dc.date.issued | 2023-12-31 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.5220/0012595700003690 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/309498 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/309498 | - |
| Descrição: dc.description | Convolutional neural networks have presented significant results in histological image classification. Despite their high accuracy, their limited interpretability hinders widespread adoption. Therefore, this work proposes an improvement to the attention branch network (ABN) in order to improve its explanatory power through the gradient-weighted class activation map technique. The proposed model creates attention maps and applies the CAM fostering strategy to them, making the network focus on the most important areas of the image. Two experiments were performed to compare the proposed model with the ABN approach, considering five datasets of histological images. The evaluation process was defined via quantitative metrics such as coherency, complexity, confidence drop, and the harmonic average of those metrics (ADCC). Among the results, the proposed model through the ResNet-50 was able to provide an improvement of 4.16% in the average ADCC metric and 3.88% in the coherence metric when compared to the respective ABN model. Considering the DesneNet-201 network as the explored backbone, the proposed model achieved an improvement of 14.87% in the average ADCC metric and 9.77% in the coherence metric compared to the corresponding ABN model. The contributions of this work are important to make the results via computer-aided diagnosis more comprehensible for clinical practice. | - |
| Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
| Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
| Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | - |
| Descrição: dc.description | Department of Computer Science and Statistics São Paulo State University, SP | - |
| Descrição: dc.description | Department of Computer Science and Engineering University of Bologna | - |
| Descrição: dc.description | WZTECH NETWORKS, Avenida Romeu Strazzi (room 503-B), 325, SP | - |
| Descrição: dc.description | Faculty of Engineering University of Porto | - |
| Descrição: dc.description | Institute of Science and Technology Federal University of São Paulo, SP | - |
| Descrição: dc.description | Faculty of Computer Science Federal University of Uberlândia, MG | - |
| Descrição: dc.description | Department of Computer Science and Statistics São Paulo State University, SP | - |
| Descrição: dc.description | FAPESP: #2022/03020-1 | - |
| Descrição: dc.description | CAPES: #311404/2021-9 | - |
| Descrição: dc.description | CAPES: #313643/2021-0 | - |
| Descrição: dc.description | FAPEMIG: #APQ-00578-18 | - |
| Formato: dc.format | 456-464 | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | International Conference on Enterprise Information Systems, ICEIS - Proceedings | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | Attention Branches | - |
| Palavras-chave: dc.subject | CAM Fostering | - |
| Palavras-chave: dc.subject | Convolutional Neural Networks | - |
| Palavras-chave: dc.subject | Grad-CAM | - |
| Palavras-chave: dc.subject | Histological Images | - |
| Título: dc.title | Improving Explainability of the Attention Branch Network with CAM Fostering Techniques in the Context of Histological Images | - |
| Tipo de arquivo: dc.type | aula digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: