Fine-Tuning Restricted Boltzmann Machines Using No-Boundary Jellyfish

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorRodrigues, Douglas-
Autor(es): dc.creatorHenrique de Rosa, Gustavo-
Autor(es): dc.creatorAugusto Pontara da Costa, Kelton-
Autor(es): dc.creatorSamuel Jodas, Danilo-
Autor(es): dc.creatorPaulo Papa, João-
Data de aceite: dc.date.accessioned2025-08-21T22:55:09Z-
Data de disponibilização: dc.date.available2025-08-21T22:55:09Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2022-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.5220/0011643400003417-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309455-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309455-
Descrição: dc.descriptionMetaheuristic algorithms present elegant solutions to many problems regardless of their domain. The Jellyfish Search (JS) algorithm is inspired by how jellyfish searches for food in ocean currents and performs movements within the swarm. In this work, we propose a new version of the JS algorithm called No-Boundary Jellyfish Search (NBJS) to improve the convergence rate. The NBJS was applied to fine-tune a Restricted Boltzmann Machine (RBM) in the context of image reconstruction. For validating the proposal, the experiments were carried out on three public datasets to compare the performance of the NBJS algorithm with its original version and two other metaheuristic algorithms. The results showed that proposed approach is viable, for it obtained similar or even lower errors compared to models trained without fine-tuning.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartment of Computing São Paulo State University-
Descrição: dc.descriptionDepartment of Computing São Paulo State University-
Descrição: dc.descriptionFAPESP: #2013/07375-0-
Descrição: dc.descriptionFAPESP: #2014/12236-1-
Descrição: dc.descriptionFAPESP: #2019/02205-5-
Descrição: dc.descriptionFAPESP: #2019/07665-4-
Descrição: dc.descriptionFAPESP: #2019/18287-0-
Descrição: dc.descriptionFAPESP: #2021/05516-1-
Descrição: dc.descriptionCNPq: 308529/2021-9-
Descrição: dc.descriptionCNPq: 427968/2018-6-
Formato: dc.format65-73-
Idioma: dc.languageen-
Relação: dc.relationProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBio-Inspired Approaches-
Palavras-chave: dc.subjectComputing Methodologies-
Palavras-chave: dc.subjectNeural Networks-
Palavras-chave: dc.subjectReconstruction-
Título: dc.titleFine-Tuning Restricted Boltzmann Machines Using No-Boundary Jellyfish-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.