Automatic Detection of Trees using Airborne LiDAR Data Based on Geometric Characteristics

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorDroneng Drones e Engenharia-
Autor(es): dc.creatordos Santos, Renato César-
Autor(es): dc.creatorda Silva, Matheus Ferreira-
Autor(es): dc.creatorAlencar, Cleber Junior-
Autor(es): dc.creatorGalo, Mauricio-
Data de aceite: dc.date.accessioned2025-08-21T15:37:18Z-
Data de disponibilização: dc.date.available2025-08-21T15:37:18Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-11-03-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.5194/isprs-annals-X-3-2024-109-2024-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309404-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309404-
Descrição: dc.descriptionOne of the essential factors in analyzing urban environments is the presence of trees. Thus, the development of automatic or semiautomatic tree detection strategies is important for monitoring and providing data for municipal authorities' planning efforts. In this context, we propose an automatic method for detecting trees using LiDAR data collected by airborne platforms. The proposed strategy uses the omnivariance as a key attribute, which is estimated locally from eigenvalues. Additionally, it utilizes an adaptive process to determine the optimal radius, followed by successive filtering based on the majority filter and mathematical morphology operators. The effectiveness of the proposed approach was evaluated on six study areas from two distinct datasets (Presidente Prudente/Brazil and Palmerston/New Zealand). In general, the results indicate a completeness rate around 99% and a correctness rate around 91%, resulting in an average Fscore of 95%. These findings suggest that the proposed approach has potential to detect trees in urban regions using airborne LiDAR data. Compared to related works, the proposed strategy tends to have a better result in terms of completeness.-
Descrição: dc.descriptionJuvenile Diabetes Research Foundation New Zealand-
Descrição: dc.descriptionPrudential-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionSão Paulo State University - UNESP Dept. of Cartography, São Paulo-
Descrição: dc.descriptionSão Paulo State University - UNESP Graduate Program in Cartographic Sciences, São Paulo-
Descrição: dc.descriptionDroneng Drones e Engenharia, São Paulo-
Descrição: dc.descriptionSão Paulo State University - UNESP Dept. of Cartography, São Paulo-
Descrição: dc.descriptionSão Paulo State University - UNESP Graduate Program in Cartographic Sciences, São Paulo-
Descrição: dc.descriptionFAPESP: 2021/06029-7-
Descrição: dc.descriptionCNPq: 309734/2022-3-
Formato: dc.format109-115-
Idioma: dc.languageen-
Relação: dc.relationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subject3D Point Cloud-
Palavras-chave: dc.subjectLASER Scanning-
Palavras-chave: dc.subjectPhotogrammetry-
Palavras-chave: dc.subjectRemote Sensing-
Palavras-chave: dc.subjectTree Extraction-
Palavras-chave: dc.subjectUrban Forests-
Título: dc.titleAutomatic Detection of Trees using Airborne LiDAR Data Based on Geometric Characteristics-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.