Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Federal Institute of Brasilia (IFB) | - |
Autor(es): dc.contributor | State Superintendency of the Federal District | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Rodrigues, Thanan | - |
Autor(es): dc.creator | Takahashi, Frederico | - |
Autor(es): dc.creator | Dias, Arthur | - |
Autor(es): dc.creator | Lima, Taline | - |
Autor(es): dc.creator | Alcântara, Enner | - |
Data de aceite: dc.date.accessioned | 2025-08-21T20:14:45Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T20:14:45Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2025-01-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.3390/rs17030480 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/309380 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/309380 | - |
Descrição: dc.description | The Cerrado domain, one of the richest on Earth, is among the most threatened in South America due to human activities, resulting in biodiversity loss, altered fire dynamics, water pollution, and other environmental impacts. Monitoring this domain is crucial for preserving its biodiversity and ecosystem services. This study aimed to apply machine learning techniques to classify the main vegetation formations of the Cerrado within the IBGE Ecological Reserve, a protected area in Brazil, using high-resolution PlanetScope imagery from 2021 to 2024. Three machine learning methods were evaluated: Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). A post-processing process was applied to avoid misclassification of forest in areas of savanna. After performance evaluation, the SVM method achieved the highest classification accuracy (overall accuracy of 97.51%, kappa coefficient of 0.9649) among the evaluated models. This study identified five main classes: grassland (GRA), savanna (SAV), bare soil (BS), samambaião (SAM, representing the superdominant species Pteridium esculentum), and forest (FOR). Over the three-year period (2021–2024), SAV and GRA formations were dominant in the reserve, reflecting the typical physiognomies of the Cerrado. This study successfully delineated areas occupied by the superdominant species P. esculentum, which was concentrated near gallery forests. The generated maps provide valuable insights into the vegetation dynamics within a protected area, aiding in monitoring efforts and suggesting potential new areas for protection in light of imminent anthropogenic threats. This study demonstrates the effectiveness of combining high-resolution satellite imagery with machine learning techniques for detailed vegetation mapping and monitoring in the Cerrado domain. | - |
Descrição: dc.description | Federal Institute of Brasilia (IFB) Campus Riacho Fundo, DF | - |
Descrição: dc.description | Brazilian Institute of Geography and Statistics (IBGE) Department of Environment and Geography State Superintendency of the Federal District, DF | - |
Descrição: dc.description | Graduate Program in Natural Disasters (Unesp/CEMADEN), SP | - |
Descrição: dc.description | Graduate Program in Natural Disasters (Unesp/CEMADEN), SP | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Remote Sensing | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | AI | - |
Palavras-chave: dc.subject | Cerrado | - |
Palavras-chave: dc.subject | protected area | - |
Palavras-chave: dc.subject | remote sensing | - |
Título: dc.title | Machine Learning-Based Cerrado Land Cover Classification Using PlanetScope Imagery | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: