Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Universidade Estadual de Campinas (UNICAMP) | - |
Autor(es): dc.contributor | Temple University | - |
Autor(es): dc.creator | Kawai, Vinicius Sato | - |
Autor(es): dc.creator | Valem, Lucas Pascotti | - |
Autor(es): dc.creator | Baldassin, Alexandro | - |
Autor(es): dc.creator | Borin, Edson | - |
Autor(es): dc.creator | Demac, Daniel Carlos Guimarães Pedronette | - |
Autor(es): dc.creator | Latecki, Longin J.A.N. | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:42:21Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:42:21Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-09-12 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1145/3659580 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/309346 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/309346 | - |
Descrição: dc.description | The large and growing amount of digital data creates a pressing need for approaches capable of indexing and retrieving multimedia content. A traditional and fundamental challenge consists of effectively and efficiently performing nearest-neighbor searches. After decades of research, several different methods are available, including trees, hashing, and graph-based approaches. Most of the current methods exploit learning to hash approaches based on deep learning. In spite of effective results and compact codes obtained, such methods often require a significant amount of labeled data for training. Unsupervised approaches also rely on expensive training procedures usually based on a huge amount of data. In this work, we propose an unsupervised data-independent approach for nearest neighbor searches, which can be used with different features, including deep features trained by transfer learning. The method uses a rank-based formulation and exploits a hashing approach for efficient ranked list computation at query time. A comprehensive experimental evaluation was conducted on seven public datasets, considering deep features based on CNNs and Transformers. Both effectiveness and efficiency aspects were evaluated. The proposed approach achieves remarkable results in comparison to traditional and state-of-the-art methods. Hence, it is an attractive and innovative solution, especially when costly training procedures need to be avoided. | - |
Descrição: dc.description | Department of Statistics Applied Math. and Computing State University of São Paulo (UNESP) | - |
Descrição: dc.description | DSC University of Campinas (UNICAMP) | - |
Descrição: dc.description | State University of São Paulo (UNESP) | - |
Descrição: dc.description | Temple University | - |
Descrição: dc.description | Department of Statistics Applied Math. and Computing State University of São Paulo (UNESP) | - |
Descrição: dc.description | State University of São Paulo (UNESP) | - |
Idioma: dc.language | en | - |
Relação: dc.relation | ACM Transactions on Multimedia Computing, Communications and Applications | - |
???dc.source???: dc.source | Scopus | - |
Título: dc.title | Rank-based Hashing for Effective and Efficient Nearest Neighbor Search for Image Retrieval | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: